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Solutions of the Schralinger equation for an attractive 1/r® potential
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Mathematical methods are presented that give pairs of linearly independent solutions for an attrefttive 1/
potential. These solutions represent a different class of special functions that are important to the understanding
of molecular vibration spectra near the dissociation threshold and slow atomic collisions.
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. INTRODUCTION wheref andg are another pair of linearly independent solu-
tions given by
The knowledge of Coulomb functions has played a key

role in our understanding of atomic spectra and electron-ion - o 1
collisions. It is the cornerstone of quantum defect theory fa(r)= E bmfl/Zme(—(f/Bs)_z), (4)
(QDT), which provides a systematic understanding of atomic m=—c 2
spectra near thresholds and relate properties of bound or qua-
sibound states to properties of electron-ion scattefing]. _ * 1
The availability of Coulomb functions also greatly reduces ga(r)= > bmrl’zYwm(E(r/,BG)Z), (5)
the configuration space that has to be treated numerically and m===
leads to powerful computational methods such as the eigen-
channelR-matrix method[3]. The solutions of the Schro and
dinger equation for an attractiver®/potential, to be pre-
sented in this paper, play a similarly important role for
molecular vibration spectra and atom-atom collisipfk

aq=c08 m(v—v)I2]Xq—siM m(v—1v)/2]Y,, (6)

Consider the radial Schdinger equation for a-C,/r" Bea=sim(v—vo)/2]Xq+cod m(v—v0)/2]Y o, (7)
potential:
a2 I1(1+1) B2 Xe|=m2 (=1)™bom, 8
n =—0o0
— = + +e|u(r)=0, 1
_ 210-2) ang <. 2 Ya= 2 (=1)"bomy, ©)
where B,=(2uC,/%°) and e=2uelfi”. The solu- M=%

tions of this equation are well known far=1,2. They are
also easily obtained for arbitraryate=0. In all these cases, . T()T (v—vo+ )T (v+ vo+1)
Eq. (1) has only a single irregular singularity. What makesb;=(—A)! - - -
the cases oh>2 ande#0 fundamentally different is the P+ DI (r=votj+ DI (v+vo+j+1

)Cj(V),

existence of two irregular singularities, one at zero and the (10
other at infinity. Fom=4, the solutions can be expressed in . . .

terms of Mathieu functionf5,6]. Forn=6, however, Eq(1) —(—A) Fv—j+DI(wv—vo— I (v+ro—j) ci(—)
cannot be transformed into one that is satisfied by any known ™ F(v+L)I'(v—vo)T(v+vy) ) ’
special function and different mathematical methods are re- (11

quired.
In Egs.(10) and(11), j is a positive integerA is a scaled

energy defined by
IIl. SUMMARY OF THE SOLUTION

Motivated by an observation of Cavagndid, we have
found for an attractive 1 potential that a pair of linearly
independent solutions with energy-independent normaliza-
tion near the origin can be written as

A=eB2/16= 1 L S— (12)
16 (7.2/211)(1/B6)?

vg IS related to angular momentuhby vy=(21+1)/4, and
A =(a+8%) aafa()=Baga(N]l, () ¢j(1)=bQ(Q(r+1)---Qr+j-1). (13

0 T — The coefficienth, is a normalization constant that can be set
ga(N=(ag+Ba) [Bafa(+aqga(r)]l, B3  to1andQ(v) is given by a continued fraction
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1
Qv)= 1 "
_Az
N L D R 2 ]Q(”“)

Finally, v is a root, which can be complex, of a characteristic function
A(r;8%)= (7= 1]) = (A*W)[Q(») — Q(—»)], (15
in which

Qv)={(v+1)[(v+1)2= 3]} 1Q(v). (16)

The pair of solutiong® andg® have been defined in such a way that they have energy-independent normalization near the
origin with asymptotic behaviors given by

5~ \[r/,BG)rl’zcos( (r1Bs)~ Z—M—z) (17)
g3(r) — \[mﬁe)rl’zsm( (r/Be)” Z—M—g) (18)

for both positive and negative energies. Their asymptotic behaviors atrlaage given fore>0 by

0 2 ] |7
far) — \/H fosm(kr—7 —ngcos(kr—?) , (19
0 2 ] |7 | 7
gq(r) — VH ngsm(kr— > ) gcos( kr— > ” (20
wherek=(2ue/%?)*? and
Zis=[(X |+Y|)S|n(71'v)] H— (=1 [agsin(mv)— Bqcod mv)]1G(— v)sin( wv—| m/2— /4)
+ By Ga(v)cod mv—|m/2— ml4)}, (21
Zig= [(X|+Y|)S|n('n'v)] H—(- 1) [aysin(7v)— B cod 7v) ]G 4(— v)cog mv—|w/2— m/4)
+BaGa(v)sin(mv—Im/2— w/4)}, (22
[(X|+Y )sin(rv) ]~ Y — (= 1)'[ Basin(mv) + a cog 7v) G (— v)siNmv—| w/2— wl4)
aGq(v)cog mv—Im/2— m/4)}, (23
Zyg= =[(X? |+Y )Sin(Trv)]_l{—(—1)'[,86|Sir‘(7'rv)+aE|COS(7TV)]G€|(—V)Coiwv—|77/2—77/4)
aqGy(v)sin(mv—Im/2— w/4)}, (24)
in which
F'(1+vo+v)I'(1—vp+v)
Ca(W= Al = e (29

andC(v)= |IdewC (v).
For e<0, f° andg® have asymptotic behaviors given by

1
9 — r2lim | Wi 15, (k) + Wi — KZV(KF) (26)

r—oo r—oo
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0 1/2y; 1
ga — F2Im | Weyl,(kT) +Wok — Ko, (k1) (27)
r—o r—oo
where k= (2u|e|/£2)Y2 and
Wi =[ (X5 +YZ)sin(mv) ] Y[ aasin(mv) = Bacod mv) 1Ga(— v) + BaGa(¥)}, (28)
Wik=[(X5+Y2)] "2 agsin(2mv) — Bacod 2mv) — Ba]Ga(—v), (29
Woi=[(XZ+YZ)sin(mv)] Y[ Basin(mv) + aqcod m1)1Ga(—v) =~ @aGa(¥)}, (30)
WgK:[(XEI +Y2) 1 12[ Basin(2my) + a o8 27v) + a ]Gy (— v). (31
|
It is important to note that both th& and thew matrices for *
a specifid are universal functions af that are independent f(x)= E BT+ m(X), (35
of the specific value ofZg. Different Cg coefficients only m="e
scale the energy differently according to ). where7 can be eithed or Y, and making use of the property

of Bessel function$8]
I1l. DERIVATION OF THE SOLUTION

-t =[2(v+m)] ! + ~1()1,
The key steps in arriving at this solution can be summa- X Trem) =20+ MLt me 100+ Toem 1(X)(]36)

rized as follows. First, express the solution as a generalized

Neumann expansion with proper argument so that the coefane can easily show that the coefficiebts satisfy a three-
ficients satisfy a three-term recurrence relation. Secondgrm recurrence relation

solve the recurrence relation using continued fractions.

Third, sum a corresponding Laurent-type expansion to obtai (v+m+1) by +[(v+m)?—v§]b,

the asymptotic behavior at infinity.
+A(v+m-1)"1b,,_,=0. (37

A. Change of variable and Neumann expansion
. . B. Solution of the recurrence relation
Through a change of variable defined by
The three-term recurrence relations foe1 are solved

x=(r/L)*, (32 by defining
ul(r):r1/2f(x), (33) b.:(—A)j F(V)F(V— VO+1)F(V+ V0+1) C-Jr
_ ) ! Fv+)r'(v=—vot+j+)I'(v+yg+j+1) !
with a=—2 andL=(1/2)*?B,, Eq. (1) can be written as (38)
, d2 d s 1 for j=0 and
X — +x—+x° =g |f(X)=—2A—f(x), (34) v ey
dx® dx X Q =¢" /¢ . (39)
in which A is the scaled energy defined by Efj2). Expand- It is then easily shown thaQ]-* is given by a continued
ing f(x) in a Neumann expansidi7,8] fraction
1
Q= (40)
2 1 n
1-A Qj+1

(v+j+D[(v+j+1) 2= v3l(v+j+2)[(v+]+2)2—v5]
and
¢/ (1=Q;~1Q{_,--Qq bo. (41)

The recurrence relations fon< —1 are solved in terms df, by defining
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T(v=j+D)T(v—vo— ) I'(v+vyg—j) _
=(—=A) _
S VUTE1) NUES) MU A 42
for j=0 and
Qj =¢j4/cy . (43
Qj s then given by a continued fraction
o= ! (44)
i 1 i
—A? ; : 2_ 2 ; - 7 Qi+t
(v=1=DI(v=] =D =rpl(v=] =2)[(v—] —=2)"—rg]
|
and Q (1)=Q(v+]), (52)
C;(V):Q;—lQ;—z"'QabO- (45 Qj_(V):Q(_V+j). (53)

From Eqs.(40) and(44), Qi+ andQ; have the properties

Qf (v) — 1, (46)

j—oo»
Q (v — 1, (47)

j—oo»
Q" (1)=Qq (v+]), (48)
Q (1 =Qq(v—1}), (49)
Q (1=Q (—»). (50)

By defining

Q(»)=Qq (»), (51

one can writer+ andQy" in terms of a single functio®(v)
as

ra 4 1/2
far) = \g(r/ﬂe)r

1 -2
@ Co E(r/ﬁe) -

9an) — \@(r/ﬁe)rl’z[—ﬁdcos(%mﬂe)2— -

where functiorQ is given by the continued fractiaii4). By
definingc; as in EqQ.(13), cJ-Jr andc; can be written as

¢ (v)=ci(v), (54)

(59

which correspond to the notation used in Ed€) and(11).
Finally, the recurrence relation fon=0,

¢ (n=cj(— ),

A(v+1) b+ (12— v3)by+ A(v—1) " tb_,=0, (56)

requires thev to be a root of the characteristic function de-
fined by Eq.(15). The same set of coefficients, gives two
linearly independent solutions corresponding to using either
JorYin Eq. (35).

C. Asymptotic behaviors

The asymptotic behaviors of and g for small r are
straightforward. From the asymptotic expansions of Bessel
functions for large argumen{8] we have

VoT T (1 -2 Tom 7

>~ 7| TBasin 5 (11Be) *~= ——— 7| |, 7
1

”;77_ %) +aE|Sin(§(r/,86)2_ V(;T_ %” 0



1732

TABLE I. Critical scaled energy for different angular momenta
.

| A,

9.654418<1072

S

p 1.47379X% 107!
d 4.30692% 1071
f 1.580826

g 2.073296

wherea and g are defined in Eqg6) and (7). The pair of
functionsf® andg® has been defined in Eg®) and(3) such

that each has energy-independent normalization near the ori

gin with asymptotic behaviors characterized by EG3) and
(18).

For the derivation of asymptotic behaviors at largét is
more convenient to use the pair of functions

- 1
Eq(r)= Z bmrllz\]u+m E(rl,86)2>a (59

[

na(n= 3 (—1>mbmr1’23_v_m(%(r/ﬁw),

(60)

which are related té andg by
fa(n)=éa(r), (61)
Eemr):Wlm[fdcos(w)—nd]. (62)

For e>0, A=k?B2/16 and one can rewrit¢ function as a
Laurent-type expansion

Ea(n)=r"kri2) 72" X pp(kr/2)®™, (63

where

(-1)°
siT(yv—m—s+1)

meA"Z

= AZS[Ai(erZS)bf(erZs)]-

(64)

The key to deriving the asymptotic behavior at largis to

recognize that the asymptotic behavior of a Laurent-type ex-

pansion, such as the one in E§3), depends only on thm
dependence ob,, for largem [9]. Making use of the prop-
erties of thel” function for large argumen{8] and the prop-
erties ofb_; for largej as embedded in Ed47), one can
show that

Pm — Ga(=») (=17

m—o

mT(—2prmrD)’ (&

whereG(v) is defined by Eq(25). Comparing them de-
pendence op,, with the coefficients of the Bessel function,
we have
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FIG. 1. Movement of the root of the characteristic function for
I=2. v, andv; represent the real and imaginary partspfespec-
tively. The root becomes complex beyond.

_ 2
Ea(r) = Ga(—»rt2limJ_,,(kr)— V= D'Ga(—»)

) l7 | . K | 7
sinl v 7 Z Sin| Kr ?
+CO{

lam = K |77
7TV—7—Z Cco r—7 .

Similarly for the » function, we have

X

(66)

ﬂel(r) - Gel(v)rllzlim J2V(kr)

2 | T | 7
— ﬁGEl(V) co WV—?—Z Silg kr—7
] l7 K |7 6

sin| v > 7 cog kr > (67)

Fore<0,A=- K2B§/16 and a similar procedure leads to

gel - Gel(_ V)rl/zlim I *ZV(Kr)

r—o

7 matrix

o T N S A S (TR S |

FIG. 2. Z matrix for|=2.
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e
o

v* is also a solution; andii) if v is a noninteger solution,

- *y+n, wheren, an integer, is also a solution. To ensure
L =2 continuity across the threshold, the proper root to take is the
one that originates at, at A=0. Using the property of the
roots mentioned above, it can be shown that this root be-
comes complex beyond a critical scaled energy deter-
mined by

- A(v=0;A%)=—12-2A%Q'(v=0)=0. (71

The critical scaled energy corresponds to shat which the
root that started out at, coalesces with another rofftom

Xi
0o O 2 N O N OO
T

%500 -400 -300 -200 -100 0 —vtn) at
A 1/2, | even
FIG. 3. x;(A) function forl=2. v=n= (1—1)/2+1, | odd. (72)
. 2sin27v) This pair of roots becomes a complex pa#=n,+iv; and
=Ga(=w)relim i1, (k1) + —————Ka, (1), v* for |A|>A, [11]. Both v andv* give the same physical
r—e results and we will take the one with positive imaginary part.

(68)  Table | lists A, for the first few partial waves. Figure 1
illustrates the movement of this root for=2.
MNel — GeI(V)rllzlim IZV(Kr)' (69)

r—o r—oe

C. Key functions

The asymptotic behaviors of other pairs of functions are eas- In a quantum defect theory based on this set of solutions

ily obtained from the asymptotic behaviors &§fand . [4], the key functions involved above the threshold is Zhe
matrix, which is the transformation matrix relating the
IV. DISCUSSION energy-normalized solution pair defined by
A. Computation 2 -
The computation is most conveniently carried by starting fe|(f)r—>w V HS"( kr— 7) (73)

with 6 as defined in Eq(16). It is given by a continued

fraction
2 ‘ s 24
geu(r):w— \/—cho r—= (74)

_ 1
Q1) - )
(v+D(v+1)"=1p] - A"Q(v+1) to the set of solutions with energy-independent normalization

which can be calculated following standard proced(ifes. gﬁgr(;g;a] origin. This relation in matrix form sf. Egs.(19)

B. Roots of the characteristic function ( f0> (fo ng> ( f)
= (79

The characteristic function(v;A?) defined by Eq(15) g° Z. 7 g/
is a function ofy with A? as a parametdithus independent
of the sign ofA). Consistent with the Neumann expansion, Figure 2 is a plot of th&Z matrix for | =2.
the roots of this function have the following properti€s:If Below threshold, the key function involved in a QDT for-
v is a solution,— v is also a solution(ii) if v is a solution, mulation of bound states is

of 99

o _[aé|sir(7TV)_B€|COS7TV)]GE|(—V)+B€|G€|(V)
X =W Woi =g i) + agcod 711G (= 1) = aaGu(2) (76)

Figure 3 is a plot of they;(A) function forl=2. W(f°,g% = —4/x. (77)

D. Wronskians

From Eqgs.(17) and(18) it is easy to show that the? and ~ Since the Wronskian is a constant that is independent ivf
g° pair has a Wronskian given by is a useful check of numerical calculations. In particular, the
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asymptotic forms off® and g° at larger should give the asymptotic potentials with known analytic solutiofis,2].

same Wronskian, which requires For example, in the case of a single channel, the bound states
of any potential that behaves asymptotically as an attractive
del(Z)=ZZyq—ZytZig= — 2, (78)  1/r8 can be formulated as the crossing points betwgén)
defined earlier and a short-rangematrix K?(€) [4]. Above
det(W) =Wg Wy — Wq Wi =4. (79  the threshold, the scattering phase shift can be written in

i o , terms of theZ matrix defined earlier and the short-ranige
These requirements have been verified in our calculations. ;¢ K|0 as[4]
V. CONCLUSION

: . : Ki=tand,=(Z;;—KPZy1) "HKPZgg—Z1g), (80
The exact solutions of the Schtinger equation for an =@ = (Z = KiZgr) (KiZgg—Z1g), (80

attractive 1v® potential have been presented. With this set of

solutions, a quantum defect theory for molecular vibrationwhich provides an analytic description of energy depen-
spectra and slow atomic collisions can be set up in a fashiodences, including shape resonances, of cold-atom collisions.
similar [4,12] to the quantum defect theories for other This and other applications are discussed elsewfieie).
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