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Solutions of the Schrödinger equation for an attractive 1/r 6 potential

Bo Gao
Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606

~Received 3 April 1998!

Mathematical methods are presented that give pairs of linearly independent solutions for an attractive 1/r 6

potential. These solutions represent a different class of special functions that are important to the understanding
of molecular vibration spectra near the dissociation threshold and slow atomic collisions.
@S1050-2947~98!04809-4#

PACS number~s!: 03.65.2w, 34.10.1x, 33.20.2t, 02.30.2f
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I. INTRODUCTION

The knowledge of Coulomb functions has played a k
role in our understanding of atomic spectra and electron
collisions. It is the cornerstone of quantum defect the
~QDT!, which provides a systematic understanding of atom
spectra near thresholds and relate properties of bound or
sibound states to properties of electron-ion scattering@1,2#.
The availability of Coulomb functions also greatly reduc
the configuration space that has to be treated numerically
leads to powerful computational methods such as the eig
channelR-matrix method@3#. The solutions of the Schro¨-
dinger equation for an attractive 1/r 6 potential, to be pre-
sented in this paper, play a similarly important role f
molecular vibration spectra and atom-atom collisions@4#.

Consider the radial Schro¨dinger equation for a2Cn /r n

potential:

F d2

dr2
2

l ~ l 11!

r 2
1

bn
n22

r n
1 ēGul~r !50, ~1!

where bn[(2mCn /\2)1/(n22) and ē52me/\2. The solu-
tions of this equation are well known forn51,2. They are
also easily obtained for arbitraryn at e50. In all these cases
Eq. ~1! has only a single irregular singularity. What mak
the cases ofn.2 and eÞ0 fundamentally different is the
existence of two irregular singularities, one at zero and
other at infinity. Forn54, the solutions can be expressed
terms of Mathieu functions@5,6#. Forn56, however, Eq.~1!
cannot be transformed into one that is satisfied by any kno
special function and different mathematical methods are
quired.

II. SUMMARY OF THE SOLUTION

Motivated by an observation of Cavagnero@7#, we have
found for an attractive 1/r 6 potential that a pair of linearly
independent solutions with energy-independent normal
tion near the origin can be written as

f e l
0 ~r !5~ae l

2 1be l
2 !21@ae l f̄ e l~r !2be l ḡe l~r !#, ~2!

ge l
0 ~r !5~ae l

2 1be l
2 !21@be l f̄ e l~r !1ae l ḡe l~r !#, ~3!
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where f̄ and ḡ are another pair of linearly independent sol
tions given by

f̄ e l~r !5 (
m52`

`

bmr 1/2Jn1mS 1

2
~r /b6!22D , ~4!

ḡe l~r !5 (
m52`

`

bmr 1/2Yn1mS 1

2
~r /b6!22D , ~5!

and

ae l5cos@p~n2n0!/2#Xe l2sin@p~n2n0!/2#Ye l , ~6!

be l5sin@p~n2n0!/2#Xe l1cos@p~n2n0!/2#Ye l , ~7!

Xe l5 (
m52`

`

~21!mb2m , ~8!

Ye l5 (
m52`

`

~21!mb2m11 , ~9!

bj5~2D! j
G~n!G~n2n011!G~n1n011!

G~n1 j !G~n2n01 j 11!G~n1n01 j 11!
cj~n!,

~10!

b2 j5~2D! j
G~n2 j 11!G~n2n02 j !G~n1n02 j !

G~n11!G~n2n0!G~n1n0!
cj~2n!.

~11!

In Eqs. ~10! and ~11!, j is a positive integer,D is a scaled
energy defined by

D[ēb6
2/165

1

16

e

~\2/2m!~1/b6!2
, ~12!

n0 is related to angular momentuml by n05(2l 11)/4, and

cj~n!5b0Q~n!Q~n11!•••Q~n1 j 21!. ~13!

The coefficientb0 is a normalization constant that can be s
to 1 andQ(n) is given by a continued fraction
1728 © 1998 The American Physical Society
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Q~n!5
1

12D2
1

~n11!@~n11!22n0
2#~n12!@~n12!22n0

2#
Q~n11!

. ~14!

Finally, n is a root, which can be complex, of a characteristic function

L l~n;D2![~n22n0
2!2~D2/n!@Q̄~n!2Q̄~2n!#, ~15!

in which

Q̄~n![$~n11!@~n11!22n0
2#%21Q~n!. ~16!

The pair of solutionsf 0 andg0 have been defined in such a way that they have energy-independent normalization ne
origin with asymptotic behaviors given by

f e l
0 ~r !→

r→0
A4

p
~r /b6!r 1/2cosS 1

2
~r /b6!222

n0p

2
2

p

4 D , ~17!

ge l
0 ~r !→

r→0
A4

p
~r /b6!r 1/2sinS 1

2
~r /b6!222

n0p

2
2

p

4 D ~18!

for both positive and negative energies. Their asymptotic behaviors at larger are given fore.0 by

f e l
0 ~r ! →

r→`

A 2

pkFZf fsinS kr2
lp

2 D2Zf gcosS kr2
lp

2 D G , ~19!

ge l
0 ~r ! →

r→`

A 2

pkFZg fsinS kr2
lp

2 D2ZggcosS kr2
lp

2 D G , ~20!

wherek5(2me/\2)1/2 and

Zf f5@~Xe l
2 1Ye l

2 !sin~pn!#21$2~21! l@ae lsin~pn!2be lcos~pn!#Ge l~2n!sin~pn2 lp/22p/4!

1be lGe l~n!cos~pn2 lp/22p/4!%, ~21!

Zf g5@~Xe l
2 1Ye l

2 !sin~pn!#21$2~21! l@ae lsin~pn!2be lcos~pn!#Ge l~2n!cos~pn2 lp/22p/4!

1be lGe l~n!sin~pn2 lp/22p/4!%, ~22!

Zg f5@~Xe l
2 1Ye l

2 !sin~pn!#21$2~21! l@be lsin~pn!1ae lcos~pn!#Ge l~2n!sin~pn2 lp/22p/4!

2ae lGe l~n!cos~pn2 lp/22p/4!%, ~23!

Zgg5@~Xe l
2 1Ye l

2 !sin~pn!#21$2~21! l@be lsin~pn!1ae lcos~pn!#Ge l~2n!cos~pn2 lp/22p/4!

2ae lGe l~n!sin~pn2 lp/22p/4!%, ~24!

in which

Ge l~n!5uDu2n
G~11n01n!G~12n01n!

G~12n!
C~n! ~25!

andC(n)5 lim j→`cj (n).
For e,0, f 0 andg0 have asymptotic behaviors given by

f e l
0 →

r→`

r 1/2lim
r→`

FWf II 2n~kr !1Wf K

1

p
K2n~kr !G , ~26!
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ge l
0 →

r→`

r 1/2lim
r→`

FWgII 2n~kr !1WgK

1

p
K2n~kr !G , ~27!

wherek5(2mueu/\2)1/2 and

Wf I5@~Xe l
2 1Ye l

2 !sin~pn!#21$@ae lsin~pn!2be lcos~pn!#Ge l~2n!1be lGe l~n!%, ~28!

Wf K5@~Xe l
2 1Ye l

2 !#212@ae lsin~2pn!2be lcos~2pn!2be l #Ge l~2n!, ~29!

WgI5@~Xe l
2 1Ye l

2 !sin~pn!#21$@be lsin~pn!1ae lcos~pn!#Ge l~2n!2ae lGe l~n!%, ~30!

WgK5@~Xe l
2 1Ye l

2 !#212@be lsin~2pn!1ae lcos~2pn!1ae l #Ge l~2n!. ~31!
t

a
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n
n
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y

It is important to note that both theZ and theW matrices for
a specificl are universal functions ofD that are independen
of the specific value ofC6. Different C6 coefficients only
scale the energy differently according to Eq.~12!.

III. DERIVATION OF THE SOLUTION

The key steps in arriving at this solution can be summ
rized as follows. First, express the solution as a general
Neumann expansion with proper argument so that the c
ficients satisfy a three-term recurrence relation. Seco
solve the recurrence relation using continued fractio
Third, sum a corresponding Laurent-type expansion to ob
the asymptotic behavior at infinity.

A. Change of variable and Neumann expansion

Through a change of variable defined by

x5~r /L !a, ~32!

ul~r !5r 1/2f ~x!, ~33!

with a522 andL5(1/2)1/2b6, Eq. ~1! can be written as

Fx2
d2

dx2
1x

d

dx
1x22n0

2G f ~x!522D
1

x
f ~x!, ~34!

in which D is the scaled energy defined by Eq.~12!. Expand-
ing f (x) in a Neumann expansion@7,8#
-
d
f-
d,
s.
in

f ~x!5 (
m52`

`

bmJn1m~x!, ~35!

whereJ can be eitherJ or Y, and making use of the propert
of Bessel functions@8#

x21Jn1m~x!5@2~n1m!#21@Jn1m11~x!1Jn1m21~x!#,
~36!

one can easily show that the coefficientsbm satisfy a three-
term recurrence relation

D~n1m11!21bm111@~n1m!22n0
2#bm

1D~n1m21!21bm2150. ~37!

B. Solution of the recurrence relation

The three-term recurrence relations form>1 are solved
by defining

bj5~2D! j
G~n!G~n2n011!G~n1n011!

G~n1 j !G~n2n01 j 11!G~n1n01 j 11!
cj

1

~38!

for j >0 and

Qj
15cj 11

1 /cj
1 . ~39!

It is then easily shown thatQj
1 is given by a continued

fraction
Qj
15

1

12D2
1

~n1 j 11!@~n1 j 11!22n0
2#~n1 j 12!@~n1 j 12!22n0

2#
Qj 11

1

~40!

and

cj
1~n!5Qj 21

1 Qj 22
1

•••Q0
1b0 . ~41!

The recurrence relations form<21 are solved in terms ofb0 by defining
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b2 j5~2D! j
G~n2 j 11!G~n2n02 j !G~n1n02 j !

G~n11!G~n2n0!G~n1n0!
cj

2 ~42!

for j >0 and

Qj
25cj 11

2 /cj
2 . ~43!

Qj
2 is then given by a continued fraction

Qj
25

1

12D2
1

~n2 j 21!@~n2 j 21!22n0
2#~n2 j 22!@~n2 j 22!22n0

2#
Qj 11

2

~44!
e-

her

sel
and

cj
2~n!5Qj 21

2 Qj 22
2

•••Q0
2b0 . ~45!

From Eqs.~40! and~44!, Qj
1 andQj

2 have the properties

Qj
1~n! →

j→`

1, ~46!

Qj
2~n! →

j→`

1, ~47!

Qj
1~n!5Q0

1~n1 j !, ~48!

Qj
2~n!5Q0

2~n2 j !, ~49!

Qj
2~n!5Qj

1~2n!. ~50!

By defining

Q~n![Q0
1~n!, ~51!

one can writeQj
1 andQj

2 in terms of a single functionQ(n)
as
Qj
1~n!5Q~n1 j !, ~52!

Qj
2~n!5Q~2n1 j !, ~53!

where functionQ is given by the continued fraction~14!. By
definingcj as in Eq.~13!, cj

1 andcj
2 can be written as

cj
1~n!5cj~n!, ~54!

cj
2~n!5cj~2n!, ~55!

which correspond to the notation used in Eqs.~10! and~11!.
Finally, the recurrence relation form50,

D~n11!21b11~n22n0
2!b01D~n21!21b2150, ~56!

requires then to be a root of the characteristic function d
fined by Eq.~15!. The same set of coefficientsbm gives two
linearly independent solutions corresponding to using eit
J or Y in Eq. ~35!.

C. Asymptotic behaviors

The asymptotic behaviors off̄ and ḡ for small r are
straightforward. From the asymptotic expansions of Bes
functions for large arguments@8# we have
f̄ e l~r !→
r→0
A4

p
~r /b6!r 1/2Fae lcosS 1

2
~r /b6!222

n0p

2
2

p

4 D1be lsinS 1

2
~r /b6!222

n0p

2
2

p

4 D G , ~57!

ḡe l~r !→
r→0
A4

p
~r /b6!r 1/2F2be lcosS 1

2
~r /b6!222

n0p

2
2

p

4 D1ae lsinS 1

2
~r /b6!222

n0p

2
2

p

4 D G , ~58!
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wherea andb are defined in Eqs.~6! and ~7!. The pair of
functionsf 0 andg0 has been defined in Eqs.~2! and~3! such
that each has energy-independent normalization near the
gin with asymptotic behaviors characterized by Eqs.~17! and
~18!.

For the derivation of asymptotic behaviors at larger , it is
more convenient to use the pair of functions

je l~r !5 (
m52`

`

bmr 1/2Jn1mS 1

2
~r /b6!22D , ~59!

he l~r !5 (
m52`

`

~21!mbmr 1/2J2n2mS 1

2
~r /b6!22D ,

~60!

which are related tof̄ and ḡ by

f̄ e l~r !5je l~r !, ~61!

ḡe l~r !5
1

sin~pn!
@je lcos~pn!2he l #. ~62!

For e.0, D5k2b6
2/16 and one can rewritej function as a

Laurent-type expansion

je l~r !5r 1/2~kr/2!22n (
m52`

`

pm~kr/2!2m, ~63!

where

pm5Dn(
s50

`
~21!s

s!G~n2m2s11!
D2s@D2~m12s!b2~m12s!#.

~64!

The key to deriving the asymptotic behavior at larger is to
recognize that the asymptotic behavior of a Laurent-type
pansion, such as the one in Eq.~63!, depends only on them
dependence ofpm for largem @9#. Making use of the prop-
erties of theG function for large arguments@8# and the prop-
erties ofb2 j for large j as embedded in Eq.~47!, one can
show that

pm →
m→`

Ge l~2n!~21!m
1

m!G~22n1m11!
, ~65!

whereGe l(n) is defined by Eq.~25!. Comparing them de-
pendence ofpm with the coefficients of the Bessel function
we have

TABLE I. Critical scaled energy for different angular momen
l .

l Dc

s 9.65441831022

p 1.47379231021

d 4.30692131021

f 1.580826
g 2.073296
ri-

x-

je l~r ! →
r→`

Ge l~2n!r 1/2lim
r→`

J22n~kr !→A 2

pk
~21! lGe l~2n!

3F2sinS pn2
lp

2
2

p

4 D sinS kr2
lp

2 D
1cosS pn2

lp

2
2

p

4 D cosS kr2
lp

2 D G . ~66!

Similarly for theh function, we have

he l~r ! →
r→`

Ge l~n!r 1/2lim
r→`

J2n~kr !

→A 2

pk
Ge l~n!FcosS pn2

lp

2
2

p

4 D sinS kr2
lp

2 D
2sinS pn2

lp

2
2

p

4 D cosS kr2
lp

2 D G . ~67!

For e,0, D52k2b6
2/16 and a similar procedure leads to

je l →
r→`

Ge l~2n!r 1/2lim
r→`

I 22n~kr !

FIG. 1. Movement of the root of the characteristic function f
l 52. n r andn i represent the real and imaginary parts ofn, respec-
tively. The root becomes complex beyondDc .

FIG. 2. Z matrix for l 52.
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5Ge l~2n!r 1/2lim
r→`

F I 2n~kr !1
2sin~2pn!

p
K2n~kr !G ,

~68!

he l →
r→`

Ge l~n!r 1/2lim
r→`

I 2n~kr !. ~69!

The asymptotic behaviors of other pairs of functions are e
ily obtained from the asymptotic behaviors ofj andh.

IV. DISCUSSION

A. Computation

The computation is most conveniently carried by start
with Q̄ as defined in Eq.~16!. It is given by a continued
fraction

Q̄~n!5
1

~n11!@~n11!22n0
2#2D2Q̄~n11!

, ~70!

which can be calculated following standard procedures@10#.

B. Roots of the characteristic function

The characteristic functionL l(n;D2) defined by Eq.~15!
is a function ofn with D2 as a parameter~thus independen
of the sign ofD). Consistent with the Neumann expansio
the roots of this function have the following properties:~i! If
n is a solution,2n is also a solution;~ii ! if n is a solution,

FIG. 3. x l(D) function for l 52.
s-

g

,

n* is also a solution; and~iii ! if n is a noninteger solution
6n1n, wheren, an integer, is also a solution. To ensu
continuity across the threshold, the proper root to take is
one that originates atn0 at D50. Using the property of the
roots mentioned above, it can be shown that this root
comes complex beyond a critical scaled energyDc deter-
mined by

L l~n50;D2!52n0
222D2Q̄8~n50!50. ~71!

The critical scaled energy corresponds to theD at which the
root that started out atn0 coalesces with another root~from
2n1n) at

n5nl5H l /2, l even

~ l 21!/211, l odd.
~72!

This pair of roots becomes a complex pairn5nl1 in i and
n* for uDu.Dc @11#. Both n andn* give the same physica
results and we will take the one with positive imaginary pa
Table I lists Dc for the first few partial waves. Figure 1
illustrates the movement of this root forl 52.

C. Key functions

In a quantum defect theory based on this set of soluti
@4#, the key functions involved above the threshold is theZ
matrix, which is the transformation matrix relating th
energy-normalized solution pair defined by

f e l~r ! →
r→`

A 2

pk
sinS kr2

lp

2 D , ~73!

ge l~r ! →
r→`

2A 2

pk
cosS kr2

lp

2 D ~74!

to the set of solutions with energy-independent normalizat
near the origin. This relation in matrix form is@cf. Eqs.~19!
and ~20!#

S f 0

g0D 5S Zf f Zf g

Zg f Zgg
D S f

gD . ~75!

Figure 2 is a plot of theZ matrix for l 52.
Below threshold, the key function involved in a QDT fo

mulation of bound states is
x l[Wf I /WgI5
@ae lsin~pn!2be lcos~pn!#Ge l~2n!1be lGe l~n!

@be lsin~pn!1ae lcos~pn!#Ge l~2n!2ae lGe l~n!
. ~76!
the
Figure 3 is a plot of thex l(D) function for l 52.

D. Wronskians

From Eqs.~17! and~18! it is easy to show that thef 0 and
g0 pair has a Wronskian given by
W~ f 0,g0!524/p. ~77!

Since the Wronskian is a constant that is independent ofr , it
is a useful check of numerical calculations. In particular,
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asymptotic forms off 0 and g0 at large r should give the
same Wronskian, which requires

det~Z!5Zf fZgg2Zg fZf g522, ~78!

det~W!5Wf IWgK2WgIWf K54. ~79!

These requirements have been verified in our calculation

V. CONCLUSION

The exact solutions of the Schro¨dinger equation for an
attractive 1/r 6 potential have been presented. With this set
solutions, a quantum defect theory for molecular vibrat
spectra and slow atomic collisions can be set up in a fash
similar @4,12# to the quantum defect theories for oth
.

f
n
n

asymptotic potentials with known analytic solutions@1,2#.
For example, in the case of a single channel, the bound s
of any potential that behaves asymptotically as an attrac
1/r 6 can be formulated as the crossing points betweenx l(D)
defined earlier and a short-rangeK matrix Kl

0(e) @4#. Above
the threshold, the scattering phase shift can be written
terms of theZ matrix defined earlier and the short-rangeK
matrix Kl

0 as @4#

Kl[tand l5~Zf f2Kl
0Zg f!

21~Kl
0Zgg2Zf g!, ~80!

which provides an analytic description of energy depe
dences, including shape resonances, of cold-atom collisi
This and other applications are discussed elsewhere@4,13#.
n
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