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Quantum-defect theory of atomic collisions and molecular vibration spectra

Bo Gao
Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606

~Received 11 March 1998!

A quantum-defect theory of atomic collisions and molecular vibration spectra is presented. Based on the
exact solutions of the Schro¨dinger equation for an attractive 1/r 6 potential, the theory provides a systematic
interpretation of molecular bound states and atom-atom scattering properties and establishes the relationship
between the two. Applications to systems including7Li2 and 23Na2 are discussed.@S1050-2947~98!08611-9#

PACS number~s!: 34.10.1x, 33.20.2t, 32.80.Pj
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Advances in laser and evaporative cooling and the r
izations of Bose-Einstein condensation in cold atomic vap
@1# have stimulated a resurgence of theoretical interes
cold-atom collisions. Despite significant progress especi
for alkali-metal atom systems@2–13#, most of our presen
understandings tend to be system specific and numeric
based. They do not yet provide significant insight about
general characteristics of cold atomic collisions.

Based on the exact solutions of the Schro¨dinger equation
for an attractive 1/r 6 potential, the details of which can b
found elsewhere@14#, we present here a quantum-defe
theory~QDT! @15,16# that gives a general characterization
all diatomic systems that interacts asymptotically via an
tractive 1/r 6 potential. Specifically, in the case of a sing
channel, the bound energy levels of any potential, which
an attractive 1/r 6 at long range, are formulated as the cro
ing points between a universal function of a scaled ene
and an analytic function of energy that is determined by
short-range interactions only. Above the threshold,
theory provides a parametrization of energy dependencie
scattering phase shifts and cross sections that is more p
erful than the traditional parametrization in terms of scatt
ing length and effective range. It incorporates the ene
dependencies induced by the long-range potential exa
and is applicable not only to thes wave but also to the highe
partial waves for which scattering length and/or effect
range may not be defined. The theory further provides a
lationship between bound and continuum properties
makes possible the predictions of scattering parameters,
as the scattering length and effective range, from experim
tal binding energies and theC6 coefficient.

Consider a system of two atoms whose interaction bey
a distance ofr 0 is represented accurately by an attract
1/r 6 potential.~Depending on the atoms involved,r 0 is typi-
cally 10–20 a.u.! With the exact solutions of the Schro¨dinger
equation for the 1/r 6 potential, the wave function atr>r 0
can always be written as

ue l~r !5Ae l@ f e l
0 ~r !2Kl

0ge l
0 ~r !#, ~1!

where f 0 andg0 are a pair of linearly independent solution
for the 1/r 6 potential with energy-independent normalizati
near the origin@17#. With this choice of reference pair func
tions, the so-called short-rangeK matrix K0, which is related
to the logarithmic derivative of the wave function at or b
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yond r 0 , is an analytic function of energy and is determin
by the short-range interactions only@14#.

From the asymptotic forms off 0 andg0 below the thresh-
old,

f e l
0 ~r ! →

r→`

~2pk!21/2@Wf 2ekr1Wf 1e2kr #, ~2!

ge l
0 ~r ! →

r→`

~2pk!21/2@Wg2ekr1Wg1e2kr #, ~3!

where theW functions are discussed elsewhere@14#, one can
write the boundary condition for bound states,ue l(r→`)
→0, as

x l~D!5Kl
0~e!. ~4!

For a specific angular-momentum quantum numberl , the
function x l(D)5Wf 2 /Wg2 is a universal function of a
scaled energyD[(1/16)@e/(\2/2m)(1/b6)2#, whereb6 is a
length scale associated with the asymptotic 1/r 6 potential and
is defined in terms the C6 coefficient by b6
[(2mC6 /\2)1/4. The x l function is universal in the sens
that it is the same for all potentials that are attractive 1/r 6 at
large distances, regardless of their behavior at short dista
or the value ofC6 coefficient which only scales the energ
differently. Thex l function for l 50 is plotted in Fig. 1. Also

FIG. 1. Thex function for l 50. Also plotted is the discrete
representation~the crosses! of Kl 50

0 for the a3Su
1 state of7Li 2 .
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plotted, as an illustration, are the bound energy levels for
a3Su

1 state of 7Li 2 as calculated by Coteet al. @5#.
Above the threshold, the scattering phase shift can

written as

Kl[tand l5~Kl
0Zgg2Zf g!~Zf f2Kl

0Zg f!
21 , ~5!

where theZ functions are again a set of universal functio
of the scaled energyD, which characterizes the asymptot
behaviors off 0 andg0 above the threshold@14#.

The QDT formulation as represented by Eqs.~4! and ~5!
serves to separate the roles of short- and long-range inte
tions in both the bound-state spectra and the continuum s
tering properties. This separation is useful for a number
reasons. First, for sufficiently large angular momentum,
scattering phase shift is determined almost exclusively by
long-range interaction. This will be reflected in the relati
magnitudes of theZ functions in Eq.~5!. Second, with this
separation,K0 is an analytic function of energy and can b
easily parametrized and extrapolated across the thresh
thus establishing the relationship between bound spectra
continuum properties. Near the threshold, thex andZ func-
tions vary with energy on a scale of (\2/2m)(1/b6)2 while
K0 varies with energy on a scale of (\2/2m)(1/r 0)2. The
QDT formulation and the parametrization ofK0 are espe-
cially useful when the long-range interaction is strong su
thatb6@r 0 , in which case the energy dependencies near
threshold are dominated by the long-range interaction for
l . Under this same condition, which is well satisfied by
alkali-metal atoms@18#, the combination of2C6 /r 6 and the
centrifugal potential (l .0) forms a potential barrier at
large distance where the short-range interactions can be
nored. Since the shape of this barrier is determined solely
the long-range interaction, the propagation of the wave fu
tion through it and thus the shape of the shape resonance@12#
t t
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is fully embedded in theZ functions, which come from the
exact solution of Schro¨dinger equation for the attractive 1/r 6

potential. Figure 2 illustrates thed-wave shape resonance
for a sample of differentK0. Different atoms can have dif
ferent K0, which leads to different shapes of shape re
nances. But they are all described by the same set of uni
sal functionsZ. Different C6 coefficients only scale the
energy differently. This is the only realistic potential barri
that we know where the shape resonances can now be
scribed analytically.

Even though theZ functions can be calculated exact
@14#, it is instructive to see the smallD expansion of Eq.~5!,
which gives a simple analytic description of the energy d
pendencies of cold-atom collisions and relates the QDT
scription to the traditional scattering length–effective ran
description when these parameters can be defined. For s
D, Eq. ~5! gives

FIG. 2. Thed-wave partial cross section as a function of t
scaled energy.
~kb6!cotd l 5052$Kl 50
0 1~1/3!~kb6!21~11/900!@Kl 50

0 2~30p/11!#~kb6!42~2p2/15!@G~1/4!#22~Kl 50
0 21!~kb6!5

1~p/90!@Kl 50
0 2~181/70p!#~kb6!6%„2p@G~1/4!#22$12~4/15!~kb6!4ln~kb6!1~2/15!@~22/5!1 ln22g#

3~kb6!4%$~Kl 50
0 21!1~1/3!~Kl 50

0 11!~kb6!21~11/900!@~Kl 50
0 21!1~30p/11!~Kl 50

0 11!#~kb6!4

2~p/90!@~Kl 50
0 21!1~181/70p!~Kl 50

0 11!#~kb6!6%2~p/15!@Kl 50
0 1~1/3!~kb6!2#~kb6!3

…

21 ~6!

~kb6!3cotd l 515@Kl 51
0 2~1/5!~kb6!2#$~p/18!@G~3/4!#22@~Kl 51

0 11!1~1/5!~Kl 51
0 21!~kb6!2#

2~p/35!Kl 51
0 ~kb6!%21, ~7!

tand l>25~3p/32!$~ l 11/2!@~ l 11/2!224#@~ l 11/2!221#%21~kb6!4. ~8!
s,
se
Hereg is Euler’s constant andKl
0 is the short-rangeK ma-

trix. These expansions of the phase shifts are such tha
cross sections are determined consistently to the order ok6,
which corresponds to the lowest order at which all par
waves withl>2 contributes. The result forl>2 agrees with
those of Levy and Keller@19#. For l 50 andl 51, which are
he

l

the most important contributions to cold-atom collision
their work does not offer closed equations for the pha
shifts.

By comparing Eqs.~6!–~8! with the standard effective
range expansion, one observes that for a 1/r 6 potential, the
scattering lengths have a definition only fors and p waves
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and the effective range has a definition only for thes wave
@20#. In contrast,Kl

0 and Eq.~5! are well defined for alll .
The s- andp-wave scattering lengths are related toKl

0(e) at
e50 by

al 505
2p

@G~1/4!#2

Kl 50
0 ~0!21

Kl 50
0 ~0!

b6 , ~9!

al 5152
p

18@G~3/4!#2

Kl 51
0 ~0!11

Kl 51
0 ~0!

b6
3 . ~10!

Thes-wave effective range is related toKl 50
0 and its deriva-

tive at e50 by

r el505
@G~1/4!#2

3p

@Kl 50
0 ~0!#211

@Kl 50
0 ~0!21#2

b6

1
@G~1/4!#2

p

Kl 50
0 8~0!~\2/2m!~1/b6!2

@Kl 50
0 ~0!21#2

b6 .

~11!

Under the condition ofb@r 0 , satisfied by alkali-metal at
oms @18#, the variation ofKl 50

0 over an energy range o
(\2/2m)(1/b6)2 is small and the second term in Eq.~11! can
be neglected. In this case thes-wave scattering length an
effective range are no longer independent but are relate
each other through Eqs.~9! and ~11!. This relationship has
been checked against independent numerical calculation
Cote et al. @5,6# for both singlets and triplets of7Li 2 and
23Na2 and excellent agreements have been found. For
ample, using a scattering length of 77.286 a.u. calculated
Cote and Dalgarno for thea3Su

1 state of23Na2 @6#, Eqs.~9!
and ~11! predict r e562.378 a.u., which is in excellen
agreement with their result of 62 a.u. Note that it is only t
consistency that we are checking here. If the more accu
value of scattering length, 85 a.u., determined by Tiesi
et al. @10# is used, Eqs.~9! and ~11! predict an effective
range of 61.8 a.u. Equation~11! further asserts that thes-
wave effective range is positive for an attractive 1/r 6 poten-
tial under the condition ofb6@r 0 @18#, which implies that a
positive slope for the cross section at the threshold wo
correspond to a positives-wave scattering length@21#.

Equations~6!–~8! give a concise description of energy
dependencies of cold-atom collisions. Other than an ene
scaling factor, different atomic pairs differ from each oth
only in K0, which can be easily parametrized especially u
der the condition ofb@r 0 . Figure 3 shows the elastic cros
section for the collision between two7Li atoms spin polar-
ized in stateuF5I 11/2,MF5I 11/2&. Two parameters are
used. First is thes-wave triplet scattering length determine
by Abrahamet al. @9#, from whichKl 50

0 is obtained through
Eq. ~9!. Second isC6, which is taken from the calculation of
Marinescuet al. @22#. Contributions from all even partia
waves withl>2 have been summed over analytically@14#.

The quantum-defect theory presented here allows for
determination of atom-atom scattering properties, which
difficult to measure directly, from molecular binding ene
gies that have the potential to be determined accurately
to
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photoassociation spectroscopy@23,9,13#. The x l function
evaluated at bound energy levels provides a discrete re
sentation ofKl

0(e) that can be extrapolated to the thresho
and above to give the scattering properties.~Figure 1 illus-
trates this representation ofKl 50

0 for the a3Su
1 state of7Li 2

using the theoretical binding energies calculated by C
et al. @5#.! Specifically, from the known binding energies, w
can calculate@cf. Eq. ~4!#

Kl
0~e i !5x l~D i !, ~12!

where the right-hand side is simply the values of the univ
sal x l function evaluated at the~scaled! binding energies.
Since Kl

0 is an analytic function of energy, it can be e
panded as

Kl
0~e!5Kl

0~0!1j1e1j2e21•••. ~13!

The values ofKl
0 at the bound energies levels,Kl

0(e i), can
thus be extrapolated to the threshold and above to give
particular Kl

0(e50), from which the scattering length an
effective range can be determined from Eqs.~9! and ~11!.
For l>1, Kl

0 can also be determined by Eq.~5! from the
position of a shape resonance@12#.

As an example, for theX1Sg
1 state of 23Na2 , a constant

extrapolation@meaning settingj15j250 in Eq. ~13!# using
the binding energy of the least-bound state calculated
Cote and Dalgarno@6# gives usa0535.1 andr e05184.9,
both of which are in excellent agreement with the results
their numerical calculation, which hada0 in between 34.9
and 35.6 andr e0 in between 184 and 187.5. Again it is th
consistency that matters here, i.e., when we use the bin
energy calculated using the specific potential chosen by C
and Dalgarno@6#, we obtain the same scattering length a
effective range as their numerical calculation. Only the bin
ing energy of the least bound state~which could have come
from an experimental measurement! and theC6 coefficient
@22# goes into our calculation.

For thea3Su
1 state of 7Li 2 , we obtain, using the experi

mental binding energy of the least-bound state as determ
by Abrahamet al. @9#, an s-wave scattering length ofa05
230.3 a.u., which is in good agreement with their result

FIG. 3. Elastic scattering cross section between two sp
polarized7Li atoms.
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227.3 a.u. The effective range predicted by Eqs.~9! and
~11! is 530 a.u. if the value ofa05227.3 a.u. is used.

In conclusion, a quantum-defect theory for an attract
1/r 6 potential is presented. It provides a consistent param
zation of both the bound molecular vibrational states and
slow atomic collision cross sections, including states w
an

.
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l>2 for which the scattering lengths are not defined. Th
theory serves as a foundation upon which more comp
theories, which can be multichannel and include the corr
tions to the long-range 1/r 6 potential, can be based.
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