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Quantum-defect theory of atomic collisions and molecular vibration spectra
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A quantum-defect theory of atomic collisions and molecular vibration spectra is presented. Based on the
exact solutions of the Schiinger equation for an attractiverf/potential, the theory provides a systematic
interpretation of molecular bound states and atom-atom scattering properties and establishes the relationship
between the two. Applications to systems includifig, and ?>Na, are discussedS1050-29478)08611-9

PACS numbsgfs): 34.10:+x, 33.20—t, 32.80.Pj

Advances in laser and evaporative cooling and the realyondr, is an analytic function of energy and is determined
izations of Bose-Einstein condensation in cold atomic vapordy the short-range interactions orli/4].
[1] have stimulated a resurgence of theoretical interest in From the asymptotic forms df andg® below the thresh-
cold-atom collisions. Despite significant progress especiallyld,
for alkali-metal atom systemi2—13], most of our present
understandings tend to be system specific and numerically o
based. They do not yet provide significant insight about the fO(r) — (2mK) YT W;_e " + W, e "], 2
general characteristics of cold atomic collisions.

Based on the e/>éact solutions of the Salinger equation i
for an attractive 1P potential, the details of which can be 0 —1/ Kt —kr
found elsewherd14], we present here a quantum-defect 9a(r) — (2m) Z[Wg_e W T, @
theory(QDT) [15,16 that gives a general characterization of
all diatomic systems that interacts asymptotically via an at
tractive 1t° potential. Specifically, in the case of a single
channel, the bound energy levels of any potential, which is~
an attractive P at long range, are formulated as the cross- i
ing points between a universal function of a scaled energy x1(A)=Kj(e). (4)
and an analytic function of energy that is determined by the
short-range interactions only. Above the threshold, thg~or a specific angular-momentum quantum numbethe
theory provides a parametrization of energy dependencies dfinction x,(A)=W;_/Wy_ is a universal function of a
scattering phase shifts and cross sections that is more powealed energ = (1/16) e/(%2/2u)(1/8¢)?], wheregBg is a
erful than the traditional parametrization in terms of scatterdength scale associated with the asymptotié€ potential and
ing length and effective range. It incorporates the energys defined in terms the Cg coefficient by Bg
dependencies induced by the long-range potential exactly=(2uCgq/%%)Y% The x, function is universal in the sense
and is applicable not only to trewave but also to the higher that it is the same for all potentials that are attractiv® &t
partial waves for which scattering length and/or effectivelarge distances, regardless of their behavior at short distances
range may not be defined. The theory further provides a resr the value ofCg coefficient which only scales the energy
lationship between bound and continuum properties andifferently. They, function forl=0 is plotted in Fig. 1. Also
makes possible the predictions of scattering parameters, such
as the scattering length and effective range, from experimen- 1oy
tal binding energies and theg coefficient. 8

Consider a system of two atoms whose interaction beyond ol
a distance ofr, is represented accurately by an attractive i
1/r® potential.(Depending on the atoms involved, is typi- :
cally 10—20 a.y.With the exact solutions of the Scldimger < ol
equation for the 1P potential, the wave function at=r,, 2O
can always be written as 2

where theW functions are discussed elsewhgtd], one can
write the boundary condition for bound stateg,(r —«)
0, as

Ua(n=A4[f%(r)—KP%(n)]1, (1) of

wheref® andg® are a pair of linearly independent solutions 10
for the 14 potential with energy-independent normalization

near the origif17]. With this choice of reference pair func-

tions, the so-called short-rangematrix K°, which is related FIG. 1. They function for |=0. Also plotted is the discrete
to the logarithmic derivative of the wave function at or be- representatiorithe crossesof K_, for the a3 state of "Li,.
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plotted, as an illustration, are the bound energy levels for the 7
a’s ! state of’Li, as calculated by Cotet al. [5].

Above the threshold, the scattering phase shift can be
written as

Ki=tand, = (KPZgg— Zig) (Z1—KPZg) ™2, (5)

where theZ functions are again a set of universal functions
of the scaled energy, which characterizes the asymptotic
behaviors off® andg® above the thresholfiL4].

The QDT formulation as represented by E@b. and (5)
serves to separate the roles of short- and long-range interac
tions in both the bound-state spectra and the continuum scat-
tering properties. This separation is useful for a number of
reasons. First, for sufficiently large angular momentum, the
scattering phase shift is determined almost exclusively by the FIG. 2. Thed-wave partial cross section as a function of the
long-range interaction. This will be reflected in the relativescaled energy.
magnitudes of th& functions in Eq.(5). Second, with this
separationK® is an analytic function of energy and can be is fully embedded in th& functions, which come from the
easily parametrized and extrapolated across the thresholdxact solution of Schidinger equation for the attractiver$/
thus establishing the relationship between bound spectra aqmbtential. Figure 2 illustrates thé-wave shape resonances
continuum properties. Near the threshold, handZ func-  for a sample of differenk®. Different atoms can have dif-
tions vary with energy on a scale of3/2u)(1/8)% while  ferent K°, which leads to different shapes of shape reso-
KO varies with energy on a scale oh?/2u)(1/ry)2. The nances. But they are all described by the same set of univer-
QDT formulation and the parametrization K are espe- sal functionsZ. Different Cq coefficients only scale the
cially useful when the long-range interaction is strong suckenergy differently. This is the only realistic potential barrier
that 8g>r, in which case the energy dependencies near théhat we know where the shape resonances can now be de-
threshold are dominated by the long-range interaction for alécribed analytically.
|. Under this same condition, which is well satisfied by all Even though theZ functions can be calculated exactly
alkali-metal atom$18], the combination of- C4/r® and the  [14], it is instructive to see the small expansion of Eq(5),
centrifugal potential I>0) forms a potential barrier at a which gives a simple analytic description of the energy de-
large distance where the short-range interactions can be iggendencies of cold-atom collisions and relates the QDT de-
nored. Since the shape of this barrier is determined solely bgcription to the traditional scattering length—effective range
the long-range interaction, the propagation of the wave funcédescription when these parameters can be defined. For small
tion through it and thus the shape of the shape resorfdi2z¢e A, Eq. (5) gives

Partial Cross Section (nB62)

(kBe)cotd o= —{K_o+(1/3)(kBs)*+ (11/900[K{_,— (30m/11) J(kBs)* — (2m*/15)[ T (1/4)] A(K_o— 1)(kBg)®
+(mI90)[KP_ o — (181/70m)](kBs) 8} (2 [ T (1/4)]2{1— (4/15)(k Bg) *In(kBg) + (2/15)[ (22/5) +In2— ]
X(KBe) H(KP_g— 1)+ (13)(KP_ o+ 1) (kBg) 2+ (11/900[ (K{_ o= 1) +(30m/11) (K{_ o+ 1) ] (k Bg)*
—(mI90)[(KP_o—1) +(181/70m) (K{_ o+ 1)1(kBe) ®} — (m/15)[ K o+ (1/3) (KB6) 2] (kBs)®) (6)

(kBe)3cotd) -1 =[K- 1~ (1/5)(kBe) 21 (m/18)[T (3/4)] A (K- 1+ 1) + (1/5)(KP- 1 — 1) (kBe)?]
—(mI35)K_1(kBe)} 2, @)

tand,—,= (3m/32){(1+ 1/2)[ (1 + 1/22— 4][(1+ 1/2)>— 1]} " *(kBg)*. (8)

Here y is Euler's constant anb(? is the short-rangé&k ma-  the most important contributions to cold-atom collisions,
trix. These expansions of the phase shifts are such that thibeir work does not offer closed equations for the phase
cross sections are determined consistently to the ordit,of  shifts.

which corresponds to the lowest order at which all partial By comparing Eqs(6)—(8) with the standard effective
waves withl =2 contributes. The result fde=2 agrees with  range expansion, one observes that forr& pbtential, the
those of Levy and Kellef19]. Forl=0 andl =1, which are  scattering lengths have a definition only ®&and p waves
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and the effective range has a definition only for theave 40
[20]. In contrast,K|0 and Eq.(5) are well defined for all.
The s- andp-wave scattering lengths are relatedﬁﬁ(e) at o 7L|
e=0 by & 30
=
270 KP,(0)—1 =
a-0= 2 0 Be: 9 g 0
[T(1/4))  KP_o(0) 3
T KP,(0)+1 e 1of
ayy=— - % Bs.- 1
143412 K{_,(0)
The s-wave effective range is related kf_, and its deriva- % 1 2 3 4 5 8
tive ate=0 by Energy (10 Kelvin)
[I‘(1/4)]2 [K|0=0(O)]2+1 FIG. 3. Elastic scattering cross section between two spin-

= ; i
Fel=0 37 [KOy(0)— 12 6 polarized ‘Li atoms.
photoassociation spectroscop23,9,13. The yx; function
evaluated at bound energy levels provides a discrete repre-
sentation OfK|O(e) that can be extrapolated to the threshold
(11) and above to give the scattering propertigsgure 1 illus-
trates this representation Kf'_, for thea®s, state of’Li,
Under the condition of3>r,, satisfied by alkali-metal at- USing the theoretical binding energies calculated by Cote
oms [18], the variation Oleozo over an energy range of €t al.[5].) Specifically, from the known binding energies, we
(h2121)(1/B84)? is small and the second term in EG1) can ~ ¢@n calculatgct. Eq. (4)]
be neglected. In this case tisevave scattering length and 0,
effective range are no longer independent but are related to Ki(e)=x(4)), (12
each other through Eq$9) and(11). This relationship has . L .
been checked against independent numerical calculations By€re the right-hand side is simply the values of the univer-
Cote et al. [5,6] for both singlets and triplets ofLi, and 5@l Xi f%n_cUon evaluated at théscaled binding energies.
23Na, and excellent agreements have been found. For ex2ince Ky is an analytic function of energy, it can be ex-
ample, using a scattering length of 77.286 a.u. calculated bjanded as
Cote and Dalgarno for tha®s | state of*Na, [6], Egs.(9)
and (11) predict r,=62.378 a.u., which is in excellent KP(€)=KP(0)+ére+ Epe+ . (13
agreement with their result of 62 a.u. Note that it is only the 0 i 0
consistency that we are checking here. If the more accuratbn€ values o at the bound energies levels;(e;), can
value of scattering length, 85 a.u., determined by Tiesingéhus be extrapolated to the threshold and above to give in
etal. [10] is used, Eqs(9) and (11) predict an effective ParticularKP(e=0), from which the scattering length and
range of 61.8 a.u. Equatiofil) further asserts that the  effective range can be determined from E¢®. and (11).
wave effective range is positive for an attractive®ipoten-  For I=1, K} can also be determined by E(F) from the
tial under the condition of8g>r, [18], which implies that a  position of a shape resonani?].
positive slope for the cross section at the threshold would As an example, for th&'X ; state of*Na,, a constant
correspond to a positivewave scattering lengtf21]. extrapolatiomeaning setting;=&,=0 in Eq. (13)] using

Equations(6)—(8) give a concise description of energy the binding energy of the least-bound state calculated by
dependencies of cold-atom collisions. Other than an energgote and Dalgarn$6] gives usay=35.1 andr.=184.9,
scaling factor, different atomic pairs differ from each otherboth of which are in excellent agreement with the results of
only in K°, which can be easily parametrized especially un-their numerical calculation, which haa, in between 34.9
der the condition of3>r,. Figure 3 shows the elastic cross and 35.6 and ¢, in between 184 and 187.5. Again it is the
section for the collision between twéLi atoms spin polar- consistency that matters here, i.e., when we use the binding
ized in state] F=1+1/2M=1+1/2). Two parameters are energy calculated using the specific potential chosen by Cote
used. First is theswave triplet scattering length determined and Dalgarnd6], we obtain the same scattering length and
by Abrahamet al.[9], from which Kf’:0 is obtained through effective range as their numerical calculation. Only the bind-
Eq.(9). Second iC4, which is taken from the calculation of  ing energy of the least bound stdtehich could have come
Marinescuet al. [22]. Contributions from all even partial from an experimental measuremeand theCgq coefficient
waves with|=2 have been summed over analyticdlly].  [22] goes into our calculation.

The quantum-defect theory presented here allows for the For thea®s state of’Li,, we obtain, using the experi-
determination of atom-atom scattering properties, which arenental binding energy of the least-bound state as determined
difficult to measure directly, from molecular binding ener- by Abrahamet al. [9], an swave scattering length oi,=
gies that have the potential to be determined accurately by 30.3 a.u., which is in good agreement with their result of

.\ [T(1/4)]% K" (0)(7212u)(1/B6)?
G [KP_o(0)—1]?

6 .
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—27.3 a.u. The effective range predicted by E@.and =2 for which the scattering lengths are not defined. The-
(11) is 530 a.u. if the value ofi,=—27.3 a.u. is used. theory serves as a foundation upon which more complete

In conclusion, a quantum-defect theory for an attractivetheories, which can be multichannel and include the correc-
1/r® potential is presented. It provides a consistent parametnt-Ions to the long-range 7 potential, can be based.

zation of both the bound molecular vibrational states and the | would like to thank D. G. Ellis, A. F. Starace, M. J.
slow atomic collision cross sections, including states withCavagnero, and L. J. Curtis for helpful discussions.
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