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We present an analytical description for ultracold collisions between two spin- 1
2 fermions with isotropic

spin-orbit coupling (SOC) of the Rashba type. We show that regardless of how weak the SOC may be, at
sufficiently low energies the collision properties are significantly modified. The ubiquitous low energy Wigner
threshold behavior is changed and its modified form for ground-state neutral atoms is given. The particles
are further found to scatter preferentially into the lower-energy helicity states due to the breaking of parity
conservation. This latter point establishes interaction with SOC as one mechanism for the spontaneous emergence
of handedness. Our theory is applicable both to elementary spin- 1

2 fermions such as electrons in condensed matter
and to ultracold pseudo-spin- 1

2 atoms such as 6Li in its ground hyperfine state.
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I. INTRODUCTION

Systems of cold atoms have become fertile laboratories
for many-body and few-body physics largely because of
the ability to tune and manipulate atomic interactions. The
magnetic Feshbach resonance [1], for instance, has allowed
precise tuning of scattering length to virtually arbitrary value,
facilitating studies of strongly coupled many-body systems [2]
and also few-body systems in the universal regime [3–5].

A new class of manipulation of cold atoms has arisen
recently under the general envelope of synthetic gauge fields,
generated mainly through coherent laser-atom interactions
[6]. Among various types, the synthetic spin-orbit coupling
(SOC) [7–10] is of special interest as it simulates a type
of coupling that is regarded as important in the fractional
quantum Hall effect and topological insulators [11,12]. SOC
naturally arises in relativistic quantum theory. For electrons
in graphene, a thorough theoretical treatment of the elastic
scattering theory for two-dimensional Dirac fermions was
presented in Ref. [13]. This study will focus on ultracold atoms,
between which the scattering is always three-dimensional
(3D) and nonrelativistic, even when confined in reduced
dimensions. Despite a large body of recent works on SOC
systems [9,14–23], many fundamental questions remain to be
answered, as elementary as effects of SOC on the two-body
scattering in 3D [24–26].

Among the active recent studies of atomic quantum gases
in the presence of synthetic gauge fields, most take the simple
approximation keeping the bare form of contact pseudopo-
tentials between two atoms in the absence of SOC intact,
while treating synthetic gauge potential terms as additional
single atom interactions. A recent experiment by Williams
et al. [27] provides an early indication that such an approach
can be problematic. The presence of SOC could give rise
to substantial and essential modifications for understanding
interacting many-body and few-body systems at low energies.
It is therefore of significant interest to find out how gauge
potential interaction terms will modify atomic low energy
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scattering. In particular, one wishes to find out if keeping the
same contact pseudopotential as if SOC were absent remains
true or not. While a perturbative argument in favor of adopting
the same contact pseudopotential is widely assumed, one is
confronted by a self-consistency issue: if the various scattering
amplitudes will change or not.

This work presents a general theoretical treatment for
the scattering of two spin- 1

2 fermions in the presence of
isotropic Rashba-type SOC. We provide explicit forms of
the self-consistent scattering amplitudes that low energy
pseudopotential needs to satisfy when SOC is present. As we
report in this article, despite being a single particle interaction,
the Rashba-type SOC modifies the dispersion relations and
the thresholds for the asymptotic states, which consequently
change significantly the low energy scattering amplitude as
well as other scattering properties between two atoms. We
demonstrate this result by studying collisions of two spin-1/2
fermions under SOC. We pick spin- 1

2 fermions for its relevance
to electrons in condensed matter, and for the fact that it can
be simulated with 6Li in its ground hyperfine state [10] and
other two-state subsystems of fermionic atom isotopes such as
40K [8,9]. We choose isotropic coupling to isolate the effects
of SOC and effects of anisotropy. Additionally, the simple
isotropic coupling allows for analytical solutions which greatly
facilitate the digestion as well as the discovery of the new
results reported here. Based on the coupled channel method
we develop and the modified Wigner threshold behavior we
report, we expect multichannel numerical calculations for
the anisotropic SOC such as the experimentally realized single
term SOC ∝ σxpx [7] can be carried out analogously to the
low energy scattering between two fixed direction atomic
dipoles [28].

The isotropic Rashba SOC we discuss is a non-Abelian-
type gauge field that persists to infinite separation. As we
discuss in this study, it substantially changes the scattering
formulation, including the very definitions of fundamental
quantities such as the incoming and outgoing states and their
associated scattering matrices. The formalism we develop
for the scattering including SOC is outlined below in detail
in Secs. II and III, and is solved analytically in terms of
scattering in the absence of SOC, by taking advantage of a
length scale separation [29,30]. The results and discussions
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are given in Sec. IV. When compared with the results in
the absence of SOC, we find a substantially altered threshold
behavior, different from the familiar Wigner behavior [31], and
a preferential scattering into the lower-energy helicity state
as a consequence of parity nonconservation. This preference
implies that handedness can spontaneously emerge as a result
of scattering with SOC. While the full implications of our
results on many-body physics with ultracold atoms are to be
explored elsewhere, it is clear that they will open interesting
possibilities for understanding and control of atomic quantum
gases with SOC. Our results are summarized in the conclusion
section.

II. OUR MODEL

This section starts with the introduction of the model
system we consider: the scattering between two atoms with
isotropic Rashba-type SOC. We also take this opportunity to
conveniently introduce several relevant scattering properties
when SOC is absent. A single spin-1/2 atom in the presence
of the isotropic Rashba-type SOC is then reviewed, with the
modified dispersion relations, thresholds for scattering states,
and the helicity states given out in explicit detail. Finally, we
discuss atomic flux density for the single atom eigenstates in
the presence of a gauge field such as SOC. The canonical and
kinetic momentum are in general different with a gauge field,
which is a crucial point for obtaining the correct scattering
amplitudes and cross sections.

We consider two identical particles with F1 = F2 = 1/2.
We use symbols F1 and F2 to emphasize that for composite
particles such as atoms, the “spin” refers to the total angular
momentum of an individual particle. In the absence of SOC,
the interaction between such two particles can very generally
be described by the Hamiltonian,

H = H1 + H2 + V̂ , (1)

where Hi = p2
i /2m is the single particle Hamiltonian in the

absence of SOC, and V̂ is an interaction operator describing
two effective central potentials: V (F=0)(r) for the singlet
states and V (F=1)(r) for the triplet states. Without SOC, the
total “spin,” F = F1 + F2, and the relative orbital angular
momentum between the two particles l are independently
conserved. The scattering is thus fully characterized by two
effective single-channel K matrices with elements, tan δF=0

l

for the “singlet” states and tan δF=1
l for the “triplet” states

[32]. For ultracold atoms, these two sets of phase shifts are
equivalently characterized at zero energy by the respective
scattering lengths for the two potentials. More generally they
can be described using either the multichannel quantum-defect
theory (MQDT) [29], or the QDT expansion [33,34].

The isotropic SOC of the Rashba type changes the single-
particle Hamiltonian from H = p2/2m to

H = p2

2m
+ h̄

m
Csoσ · p, (2)

where σ denotes the Pauli spin matrix, and Cso is a constant
characterizing the strength of SOC. It has the dimension of
a k vector (inverse length), with its magnitude to be denoted
by kso ≡ |Cso|. The corresponding energy scale for SOC is
sE = h̄2k2

so/m. This above single-particle Hamiltonian (2)

is diagonalized by states |±,nso〉|k〉, where |k〉 describes
the translational motion, and is an eigenstate of p with
an eigenvalue of h̄k. |±,nso〉 is a short-hand notation for
|F = 1/2,M = ±1/2,nso〉 with nso defining the direction of
quantization. More explicitly, in position and z-axis quantized
spinor representation, they take the form,

ψ+(r,χ ) = 〈r,χ |+,nso〉|k〉

= 1

(2π )3/2
eik·r

(
cos(θso/2)

sin(θso/2)eiφso

)
, (3)

ψ−(r,χ ) = 〈r,χ |−,nso〉|k〉

= 1

(2π )3/2
eik·r

(
sin(θso/2)

−cos(θso/2)eiφso

)
, (4)

where (θso,φso) are the angles specifying the direction vector
nso. In the above two eigenstates (3) and (4) for the single-
particle Hamiltonian (2), eik·r is the corresponding plane wave,
and the two component spinors are the internal spin wave
functions expressed along the laboratory fixed z-quantization
axis. We will generally call them the helicity states.

For the isotropic Rashba-type SOC, nso = k̂ = k/k, when
Cso > 0. One can simply switch to nso = −k̂ = −k/k for
Cso < 0, with all results remaining intact. For the same k, the
“±” states have different energies as given by the distinctively
different dispersion relations: E± = h̄2k2/2m ± h̄2ksok/m.
For a fixed energy E, the “±” states correspond to different
canonical momentum k± = √

k2 + k2
so ± kso satisfying the

dispersion relations: E = h̄2k2
±/2m ± h̄2ksok±/m as shown

in Fig. 1. In order to simplify notation, we assume in the
following, Cso > 0. This corresponds to taking nso = k̂, or the
direction of the canonical momentum k for a single particle in
free space.

The scattering cross sections are properly defined in terms
of the ratios of the scattered particle flux densities to the
incoming flux density [35]. At the single-particle level, the
effect of SOC on particle flux is already clearly visible. Thus,
we need to revisit in detail the probability flux, j (r), which

FIG. 1. (Color online) The dispersion curve for the helicity state
|±,nso〉|k〉 of a single pseudo-spin- 1

2 atom with isotropic Rashba
SOC. The two branches correspond, respectively, to the higher energy
(“+”) and lower energy (“−”) states when Cso > 0. At each energy
E = h̄2k2/2m > 0, the “±” states correspond to different k+ and k−.
When E < 0, the two intersection points are labeled by k<

− and k>
− ,

respectively. Both belong to the same lower energy helicity branch.
sE = h̄2k2

so/2μ is the energy scale for the SOC.
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is the diagonal element of a probability flux operator in the
coordinate representation, traced over the spin degrees of
freedom. More specifically, we find

j (r) = Trspin〈r |̂ j |r〉, (5)

where ĵ is the flux operator, defined in a pure state |ψ〉 by

ĵ = 1
2 [̂v|ψ〉〈ψ | + |ψ〉〈ψ |̂v] , (6)

in which v̂ is the velocity operator defined by v̂ = ̂̇r =
[̂r,H]/ih̄. In the absence of SOC, v̂ = p̂/m, and the flux
reduces to its standard form [35]. With SOC, the velocity
operator becomes v̂ = p̂/m + h̄Csoσ/m. For the two helicity
states (3) and (4), we find the flux densities,

j (r) = h̄

m

√
k2

so + k2 k̂±, (7)

for E > 0 with k =
√

2mE/h̄2. When −h̄2k2
so/2m < E < 0,

we find

j<
−(r) = − h̄

m

√
k2

so − κ2 k̂
<

−, (8)

j>
−(r) = h̄

m

√
k2

so − κ2 k̂
>

−, (9)

with κ =
√

−2mE/h̄2. In the latter case of E < 0, the “+”
helicity channel is closed while there now exist two “−”
helicity states with k<

− = kso − √
k2

so − κ2 and k>
− = kso +√

k2
so − κ2.
For scattering at E > 0, the case that we consider in this

paper, the important single-particle property in SOC is the one
as implied by Eq. (7). At a fixed energy, the “±” states have
different phase velocities, given by h̄k±/m, but the same group
velocity and/or flux density, given by Eq. (7).

III. SCATTERING BETWEEN TWO ATOMS

This section presents our detailed development of a proper
framework for studying collisions in the presence of the
single-particle SOC. In atomic physics, SOC often refers to
an interaction of the form ∝σ · l , where l is the orbital angular
momentum. For instance, the atomic fine structure interaction
is of this form and can be understood in terms of the interaction
of atomic spin with its own magnetic field due to orbital
motion. Theoretical treatment for collision in the presence
of σ · l type SOC are standard textbook material and can be
found in Refs. [35,36].

The SOC under investigation here is more precisely a
spin-momentum coupling ∝ σ · p, which is often encountered
in condensed matter physics. Unlike σ · l , parity conservation
is violated by the Rashba-type SOC interaction σ · p. To
investigate the scattering properties between two particles
under SOC, we need to proceed with extra care, properly
identify all relevant steps in a scattering calculation: from the
classification of the scattering channels, the identification of
the incoming and the outgoing scattering states, to the proper
construction of the scattering matrices. We will carry out the
above steps in this section, formulating a suitable theory for
treating scattering in the presence of SOC. To our knowledge,
we are not aware of any framework of scattering theory directly
adaptable to the SOC ∝ σ · p considered in this study.

For two atoms in the presence of the isotropic Rashba-type
SOC and interacting through a central potential V̂ , as described
by Eq. (1), the conservation of their total canonical momentum,
P = p1 + p2, allows the investigation of scattering in the
center-of-mass frame, P = 0. The relative motion is described
by the Hamiltonian,

Hrel = p2

2μ
+ V̂ + h̄

m
Cso(σ 1 − σ 2) · p, (10)

where μ = m/2 is the reduced mass, and p is the (canonical)
momentum for the relative motion. In this center-of-mass
frame, making use of the helicity states (3) and (4) introduced
above for a single spin- 1

2 atom in the presence of SOC, we
find that at large interparticle separation when V̂ is negligible,
the single dispersion relation, E = h̄2k2/2μ, applicable to
all spin states without SOC, changes into three branches:
E = (h̄2/2μ)(k2

1 + 2ksok1) for the two-particle spin state
|+,k̂1〉1|+,−k̂1〉2, E = h̄2k2

2/2μ for the |+,k̂2〉1|−,−k̂2〉2 and
|−,k̂2〉1|+,−k̂2〉2 spin states, and E = (h̄2/2μ)(k2

3 − 2ksok3)
for the |−,k̂3〉1|−,−k̂3〉2 spin state. The helicity state ket
indices 1 and 2 denote atoms 1 and 2, respectively. This
change of dispersion is one of the key characteristics for
two-atom collision in the presence of single-atom SOC.
The three branches of dispersion curves are illustrated in
Fig. 2.

The four spin states for two atoms introduced above
constitute what we call the two-particle helicity states. The
different dispersion relations for the |+,k̂1〉1|+,−k̂1〉2 and
|−,k̂3〉1|−,−k̂3〉2 states, which are related to each other by
a parity operation, are direct consequences of the parity
nonconservation nature of the Rashba-type SOC we consider.
The time-reversal symmetry is, however, still maintained. The
two states |+,k̂2〉1|−,−k̂2〉2, and |−,k̂2〉1|+,−k̂2〉2 are also
related to each other through a parity operation.

For two identical fermions in the asymptotic region when
the interatomic potential is negligible, the antisymmetric states

FIG. 2. (Color online) The three branches of dispersion for
two particles with SOC in the center-of-mass frame. For each
energy E = h̄2k2/2μ > 0, the three corresponding k’s, given in
the order of increasing magnitude, are k1 = √

k2
so + k2 − kso for the

|+,+; k1〉 state, k2 = k for the |+,−; k2〉 and |−,+; k2〉 states, and
k3 = √

k2
so + k2 + kso for the |−,−; k3〉 state. As in Fig. 1 for a single

atom, for E < 0 the two intersection points are labeled by k<
3 and k>

3 ,
respectively, belong to the same lowest energy branch.
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at the same energy of E can be easily constructed to be

|+,+; k1〉in = 1√
2

(|+,k̂1〉1|+,−k̂1〉2|k1〉

− |+,−k̂1〉1|+,k̂1〉2|−k1〉),
|+,−; k2〉in = 1√

2
|+,k̂2〉1|−,−k̂2〉2(|k2〉 − |−k2〉),

(11)

|−,+; k2〉in = 1√
2
|−,k̂2〉1|+,−k̂2〉2(|k2〉 − |−k2〉),

|−,−; k3〉in = 1√
2

(|−,k̂3〉1|−,−k̂3〉2|k3〉

− |−,k̂3〉1|−,−k̂3〉2|−k3〉),
where |kj 〉 denotes the nominal plane-wave function with
momentum kj . When no ambiguity arises, we will adopt a
shorthand notation to index the incoming states, using |1〉in

for |+,+; k1〉in and |3〉in for |−,−; k3〉in to index the various
matrix elements within the lowest total angular momentum
subspace of Ft = 0.

As in Eqs. (3) and (4) for a single atom, we can express the
above states in the position and lab fixed z-quantization axis
spinor representation. For example, we find


1(r,χ1,χ2) = 〈r,χ1,χ2|+,+; k1〉

= i

2
√

2

⎡⎢⎢⎣eik1·r

⎛⎜⎜⎝
−e−iφk1 sin θk1

1 + cos θk1

−1 + cos θk1

eiφk1 sin θk1

⎞⎟⎟⎠

−e−ik1·r

⎛⎜⎜⎝
−e−iφk1 sin θk1

−1 + cos θk1

1 + cos θk1

eiφk1 sin θk1

⎞⎟⎟⎠
⎤⎥⎥⎦ , (12)

where χ1 and χ2 are now spinors for atom 1 and 2, respectively,
and the four row spinor represents the two-atom internal
spin state in their joint z-quantization representation. From
top to down, respectively, the elements of the spinor corre-
spond to projects on direct product spin states |+,ẑ〉1|+,ẑ〉2,
|+,ẑ〉1|−,ẑ〉2, |−,ẑ〉1|+,ẑ〉2, |−,ẑ〉1|−,ẑ〉2. Similarly, one can
find the explicit forms for


2(r,χ1,χ2) = 〈r,χ1,χ2|+,−; k2〉,

3(r,χ1,χ2) = 〈r,χ1,χ2|−,+; k2〉, (13)


4(r,χ1,χ2) = 〈r,χ1,χ2|−,−; k3〉.
Each of the above four states constitutes a proper “incom-

ing” state, analogous to the incoming plane wave ∝eikz (taken
to be along the z-axis direction) for single channel scattering
of a spinless particle. This study concerns the scattering
between two identical fermions, therefore antisymmetrization
is enforced on the total wave functions. The particle flux
density for each of the relative motion incoming state (11) can
be easily computed analogous to the single-particle results of
(7) and (8) or (9). We find in the asymptotically large r region
and for scattering at E > 0, the flux densities are, respectively,
given by h̄

√
k2

so + k2/μ for states |+,+; k1〉in and |−,−; k3〉in,
and h̄k/μ for states |+,−; k2〉in and |−,+; k2〉in. Compared
with the single-atom results in the previous section, the particle
mass is now replaced by the reduced mass μ = m/2.

We now describe the structure of collision channels. In
the presence of SOC, even the isotropic Rashba SOC under
consideration here, F and l are generally no longer inde-
pendently conserved. However, the total angular momentum
Ft = F + l is conserved. The wave function for each total
angular momentum, FtMt , can be expanded as follows:

ψFtMt

η =
∑

α


FtMt

α GFt

αη(r)
/
r,

where GFt
α /r describes the relative radial motion, and η is an

index for different linearly independent solutions. The 
FtMt
α

are channel functions, indexed by α, describing all degrees
of freedom other than the relative radial motion. They are
conveniently chosen here to be the {F,l} basis, in which the
interaction in the absence of SOC is diagonal. The summation
over α, namely the {F,l} combinations, is restricted both by
the angular momentum conservation and by F + l = even as
imposed by the symmetry under the exchange of particles
[37]. This leads to the following general channel structure
for interaction with isotropic SOC. All Ft = odd states are
described by single-channel problems with the triplet potential
V (F=1)(r), corresponding to {F = 1,l = Ft }. All Ft = even
states, other than Ft = 0, are described by three-channel prob-
lems, corresponding to {F = 0,l = Ft }, {F = 1,l = Ft − 1},
and {F = 1,l = Ft + 1}. The Ft = 0 states are described by a
two-channel problem with {F = 0,l = 0} and {F = 1,l = 1}.

The SOC term h̄(σ 1 − σ 2) · p/m in the two-atom scattering
Hamiltonian (10) commutes with total angular momentum
Ft . Thus, one can find their common eigenstates. In each of
the above discussed subspace labeled by {F,l}, the scattered
wave function for each FtMt can be expanded in terms of
the following four outgoing internal states with their helicities
defined with respect to the r̂-quantization axis,

|+,+; r̂〉out = |+,r̂〉1|+,−r̂〉2,

|+,−; r̂〉out = |+,r̂〉1|−,−r̂〉2,
(14)

|−,+; r̂〉out = |−,r̂〉1|+,−r̂〉2,

|−,−; r̂〉out = |−,r̂〉1|−,−r̂〉2.

Unlike the incoming states (11), the spatial part for the
scattered waves correspond to spherical outgoing waves with
fixed parity under exchange of the two atoms, thus they are not
included into the definitions of the outgoing scattering states
here. The r̂ quantization is a must as the scattered particles
move along the direction of r , thus their helicities are defined
with respect to the outgoing along the direction of r . Among
the four, |+,+; r̂〉out and |−,−; r̂〉out are antisymmetrized.
The |+,−; r̂〉out and |−,+; r̂〉out do not have fixed exchange
symmetry by themselves. They always appear together in
antisymmetrized linear combinations.

For identical spin-1/2 fermions we study here, the sub-
space of (Ft = odd,Mt ) contains only two outgoing states
|+,−; r̂〉out and |−,+; r̂〉out. The subspace of (Ft = even >

0,Mt ) contains all four outgoing states, except for Ft =
0, where only two states are involved: |+,+; r̂〉out and
|−,−; r̂〉out. This point will become clearer after the spatial
wave functions are explicitly substituted into the Schrödinger
equation for two atoms.
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In the ultracold regime, we affirm that the cross sections or
the particle fluxes in higher-Ft spaces can be neglected, due
to the same reason which gives rise to the ubiquitous Wigner
threshold law for single-channel scattering by a spherically
symmetric short-ranged potential at low energies. In the
dominant (Ft = 0,Mt = 0) subspace, the radial functions
GFt

α (r) satisfy the two-by-two coupled-channel equations,
which are given explicitly below,[

−
(

h̄2

m

d2

dr2
+ E

) (
1 0

0 1

)
+ V̂Ft=0

] [
G

Ft=0
F=0l=0(r)

G
Ft=0
F=1l=1(r)

]
= 0,

(15)

where the effective potential in the Ft = 0 subspace is

V̂Ft=0 =
[

V (0)(r) 2ih̄2Cso
(

d
dr

+ 1
r

)/
m

2ih̄2Cso
(

d
dr

− 1
r

)/
m V (1)(r) + 2h̄2/mr2

]
. (16)

This form of a coupled Schrödinger equation between different
channels (radial functions) is a general feature of scattering
with SOC. An earlier study used an ansatz for the scattering
solution that forbids cross channel scattering, the results thus
correspond to that of two single channels [24].

The SOC gives rise to the off-diagonal terms in Eq. (16),
which cannot be neglected even at infinite interparticle
separation. To properly include their effect on the scattering,
the scattering K matrix is now determined through the correct
asymptotic solutions as in the following:

GFt /r|r→∞ ∼J Ft − YFt KFt , (17)

where

J Ft=0 =
[

1√
2
k1j0(k1r) − 1√

2
k3j0(k3r)

−i 1√
2
k1j1(k1r) −i 1√

2
k3j1(k3r)

]
, (18)

and

YFt=0 =
[

1√
2
k1y0(k1r) − 1√

2
k3y0(k3r)

−i 1√
2
k1y1(k1r) −i 1√

2
k3y1(k3r)

]
, (19)

where k1 = √
k2

so + k2 − kso and k3 = √
k2

so + k2 + kso, as
illustrated in Fig. 2 are the corresponding low and high
canonical momenta in the two helicity states |+,+; r̂〉out and
|−,−; r̂〉out. jl(x) and yl(x) are the spherical Bessel functions
[38]. The J Ft=0 and YFt=0 are the exact regular and irregular
analytic solutions of Eq. (16) in the absence of any interaction
potentials or for V (0) = V (1) ≡ 0. The two columns of the
above matrices, respectively, correspond to solutions at k1 and
k3. They are associated with the |+,+; r̂〉out and |−,−; r̂〉out

states, which justifies our early statement that the helicity states
|+,−; r̂〉out and |−,+; r̂〉out are not involved in the lowest total
angular momentum subspace of Ft = 0 we consider. In this
two-dimensional subspace, when no ambiguity arises, we also
adopt a shorthand notation for the outgoing channels, using
|1〉out (for |+,+; r̂〉out) and |3〉out (for |−,−; r̂〉out) to index the
various matrix elements. For spin- 1

2 fermions in the presence
of an isotropic Rashba SOC, the low energy collision can
then be most conveniently visualized as scattering from the
two incoming states |+,+; k1〉in and |−,−; k3〉in into the two
outgoing helicity state manifold of |+,+; r̂〉out and |−,−; r̂〉out.

The above formulation for two spin- 1
2 particles with SOC

is very general, applicable for arbitrary energy (below the
hyperfine splitting when applied to 6Li) and SOC coupling
strength. In reality, both experimental realizations of SOC
[7–10] and the very validity of the Hamiltonian used to
describe it, imply that we are most interested in a regime
of SOC being weak, in the following sense. Let r0 be the
range of interaction without SOC, determined by equating the
kinetic energy (h̄2/2μ)(1/r2

0 ) to the van der Waals energy at
r0 [33]. The energy scale of SOC, sE , is generally much smaller
than the energy scale associated with the shorter-range van der
Waals interaction. This criterion, which is equivalent to the
length scale separation, 1/kso 
 r0, basically ensures that the
SOC and other interactions are important in different regions
and are not important simultaneously [29,30]. Under such a
condition, scattering in the presence of SOC can be solved in
terms of scattering in the absence of SOC. Specifically, the K

matrix, as defined by Eq. (17), can be obtained by matching
Eq. (17), in a region of r0 � r � 1/kso, to inner solutions
for which the SOC is negligible. This is conceptually similar
to the multiscale quantum-defect treatment of two atoms in a
trap [30].

Other scattering matrices such as the S matrix can be
defined in a similar manner with their usual relationships
maintained. For example, the S matrix is related to the
K matrix by SFt = (I + iKFt )(I − iKFt )−1, where I is the
identity matrix. The complete scattering information can then
be extracted as in the standard scattering theory [39]. We note
that in standard multichannel scattering theory without SOC
(see, e.g., Ref. [37]), J Ft and YFt would have been diagonal.

After a rather lengthy calculation, we find analytically all
linear independent solutions at large r for all total angular
momentum subspaces (FtMt ). When properly matched to their
corresponding short-range solutions in the absence of SOC, the
complete scattering solutions are found [39]. For the lowest
total angular momentum subspace of Ft = 0, which gives
dominant contributions at low energies, the scattered waves
defining the S matrix are given by the following:

�|+,+;k1〉in→|+,+;r̂〉out (r,χ ) =
√

2
eik1r

r

S
Ft=0
1,1 − 1

2ik1
|+,+; r̂〉out,

�|+,+;k1〉in→|−,−;r̂〉out (r,χ ) =
√

2
eik3r

r

S
Ft=0
3,1

2ik1
|−,−; r̂〉out,

(20)

�|−,−;k3〉in→|+,+;r̂〉out (r,χ ) =
√

2
eik1r

r

S
Ft=0
1,3

2ik3
|+,+; r̂〉out,

�|−,−;k3〉in→|−,−;r̂〉out (r,χ ) =
√

2
eik3r

r

S
Ft=0
3,3 − 1

2ik3
|−,−; r̂〉out,

where the outgoing spherical waves are indicative of their
being scattered and propagating radially outwards with the
corresponding canonical momentum kj . The first index i of
the S-matrix element Si,j is the shorthand notation for the
outgoing states |i = 1〉out and |i = 3〉out since the other two
outgoing states are not involved in the Ft = 0 subspace, while
the second index j is the shorthand notation for the incoming
states |i = 1〉in and |i = 3〉in defined earlier in Eq. (11). This
simplified index scheme within the Ft = 0 subspace will be
adopted for all discussions in the following. The scattered
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particles give rise to outgoing fluxes which can be analogously
calculated from the above scattering solutions (20), and we find

jFt=0
|i〉in→|j〉out

(r) = h̄

m

√
k2

so + k2

∣∣SFt=0
j,i − δij

∣∣2

k2
i

r̂
r2

, (21)

for i,j ∈ {1,3}. The various cross sections can be then defined
properly in terms of the ratios of the scattered flux densities to
the incoming particle flux densities, which then gives

σ [|i〉in → |j 〉out] = 2π

k2
i

∣∣SFt=0
j,i − δij

∣∣2
. (22)

As we emphasized before, in the presence of SOC, the
distinction between canonical and kinetic momentum is crucial
for a proper definition of scattering cross sections in terms of
particle flux densities.

IV. RESULTS AND DISCUSSIONS

In this section, we present the results from the lowest total
angular momentum subspace of Ft = 0. Results for higher
total angular momentum subspaces of Ft > 0 will be presented
elsewhere as they do not provide meaningful contributions at
low scattering energies [39].

For energies much greater than sE , we obtain the K matrix
to be given by the K matrix in the {F,l} basis through a frame
transformation. For Ft = 0, e.g., we obtain

KFt=0 = UFt=0†

(
tan δF=0

l=0 0

0 tan δF=1
l=1

)
UFt=0, (23)

where UFt=0 is a global unitary matrix,

UFt=0 = 1√
2

(
1 −1

−i −i

)
, (24)

which transforms the diagonal K matrix in the absence of
SOC in the spin singlet and triplet basis into the proper two-
dimensional helicity basis of shorthand notations 1 and 3 in
the total Ft = 0 subspace. This result, together with similar
results for other total angular momenta, has a very simple
physical interpretation. It states that for energies much greater
than the SOC energy scale, SOC has no effect on the scattering
dynamics, except to facilitate the preparation and detection of
particles in the helicity basis. This result is also confirmed by
our analytical solutions Eqs. (17)–(19). At higher energies,
k1 ∼ k3 ∼ k, the matrix solutions Eqs. (18) and (19) indeed
correspond to that obtained from solutions in the singlet and
triplet basis in the absence of SOC transformed by the above
frame transformation matrix (24). In the absence of SOC, the
same K matrix describes scattering in the helicity basis, and
is applicable for all (positive) energies.

For energies comparable or smaller than sE , the length scale
separation ensures that we are well into the region dominated
by the s-wave scattering, which is well characterized, for
the vast majority of systems, by the universal behaviors of
tan δF=0

l=0 ≈ −aF=0k and tan δF=1
l=1 ≈ 0. In this case, we obtain

KFt=0 = − aF=0

k1 + k3

(
k2

1 −k1k3

−k1k3 k2
3

)
. (25)

We also obtain this same result from the analytic solu-
tion of Eq. (16) for the pseudopotential model of V (0) =
2πh̄2aF=0

μ
δ(r) ∂

∂r
(r·) and V (1) ≡ 0 [40]. Technically, such an

approach is equivalent to imposing the boundary conditions
of G

Ft=0
F=0l=0(r) r→0∼ Ar(1 − aF=0/r) and G

Ft=0
F=1l=1(r) r→0∼ 0,

consistent with the modified Bethe-Peierls boundary condition
of Zhang et al., which gives G

Ft=0
F=1l=1(r)/r r→0∼ const. ∝kso,

beyond the divergent term vp/r2 in several recent studies on
the same topic [25,26,41,42]. For low energy collisions, terms
proportional to the p-wave scattering volume vp or higher
are neglected as their contributions are vanishingly small. Our
result, however, contains more information. For instance, it
includes higher order terms relating to the s-wave effective
range and the p-wave scattering volume without SOC, as
well as scattering amplitudes in the higher Ft subspaces [39].
Both of the above two aspects will be reported elsewhere. In
addition, unlike [25,26], our result takes the form of simple
analytical expressions. The multiscale QDT approach contains
the pseudopotential results [30]. It is more general and leaves
room for future generalizations, including both the cases of
nonuniversal behavior around aF=0 = 0 [33] and the case
of much stronger SOC, the treatment of the latter would be
similar to the treatment of hyperfine effects in atomic scattering
[29].

The K matrix of Eq. (25) immediately gives the following
set of cross sections for ultracold collisions in the presence of
SOC,

σ [|1〉in → |1〉out] = σ [|3〉in → |1〉out]

= 8πa2
F=0

k2
1

(k3 + k1)2 + a2
F=0

(
k2

3 + k2
1

)2 ,

(26)
σ [|1〉in → |3〉out] = σ [|3〉in → |3〉out]

= 8πa2
F=0

k2
3

(k3 + k1)2 + a2
F=0

(
k2

3 + k2
1

)2 .

(27)

In comparison, the cross sections in the absence of SOC,
determined by the K matrix of Eq. (23) in the helicity basis,
are given in the s wave region by

σ [|1〉in → |1〉out] = σ [|3〉in → |1〉out]

= σ [|1〉in → |3〉out] = σ [|3〉in → |3〉out]

= 2πa2
F=0

1 + a2
F=0k

2
, (28)

which all follow the Wigner threshold behavior [31] of σ ∼
const. at small k.

Equations (26)–(28) are the main results of this work.
They represent the universal behaviors satisfied by the vast
majority of spin- 1

2 systems in the ultracold regime. The
strength of SOC only affects length and energy scaling. With
proper rescaling, different systems differ from each other only
in a single dimensionless parameter of ηso ≡ ksoaF=0, with
ηso = ∞ corresponding to the unitarity limit.

In the high k end when k > kso (still within the low energy
collision limit), we see the characteristic 4π/k2 dependence in
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the presence of SOC. This is the same as the s-wave unitarity
limit (28) when SOC is absent. It is reduced by a factor of two
due to the use of helicity basis outgoing states.

The small k behavior of k < kso, however, show surprising
new physics due to SOC. We focus here on two aspects of
physics contained in these results. First, the SOC substantially
modifies the threshold behavior, from the Wigner threshold
law of σ ∼ const. for all cross sections, to

σ [|1〉in → |1〉out] = σ [|3〉in → |1〉out] ∼ πa2
F=0

2k4
so

k4, (29)

σ [|1〉in → |3〉out] = σ [|3〉in → |3〉out] ∼ 8πa2
F=0, (30)

for ksoaF=0 � 1, and

σ [|1〉in → |1〉out] = σ [|3〉in → |1〉out] ∼ π

8k6
so

k4, (31)

σ [|1〉in → |3〉out] = σ [|3〉in → |3〉out] ∼ 2π

k2
so

, (32)

for ksoaF=0 
 1. They imply that the interaction in |1〉in

is dominated by inelastic scattering into the |3〉out channel,
while the interaction in |3〉in is dominated by elastic collision
within the |3〉out channel. Figures 3 and 4 show illustrative k

dependence of the above two cross sections at selected values
of the singlet scattering length aF=0.

Magnetic field tuned Feshbach resonance in atomic sys-
tems has enabled interesting investigation of the many-body
physics in BCS to BEC crossover, particularly concerning
the universality regime when the scattering length aF=0

changes from −∞ → ∞. Many theoretical studies address
this topic when synthetic SOC is included. Our results above
show, however, that such extensions may be improper as the
scattering amplitude is now limited by either aF=0 or 1/kso

(instead of 1/k for without SOC), whichever is smaller. The
strength of SOC, kso, thus introduces a lower momentum
cutoff. In the presence of SOC, when aF=0 is tuned across
a Feshback resonance, the scattering amplitude no longer
diverges. When SOC is absent, our result recovers the usual
scattering amplitude.

FIG. 3. (Color online) The k dependence of the cross sections
σ [|1〉in → |1〉out] and σ [|3〉in → |1〉out] of Eq. (26). The limits of
small k are discussed in the main text. The dotted line is the ∼1/k2

unitarity limit, while the dot-dashed lines denote the modified Wigner
threshold limit of ∼k4 at small k.

FIG. 4. (Color online) The same as in Fig. 3 but for the scattering
cross sections σ [|1〉in → |3〉out] and σ [|3〉in → |3〉out] of Eq. (27). The
modified threshold limit becomes ∼a2

F=0 and ∼1/k2
so, respectively,

for ksoaF=0 � 1 and ksoaF=0 
 1.

Second, particles are preferentially scattered into the lower-
energy helicity state, the “−” state when Cso > 0, as reflected
by σ [|1〉in → |3〉out] being always greater than σ [|3〉in →
|1〉out]. More specifically,

σ [|1〉in → |3〉out]

σ [|3〉in → |1〉out]
= k2

3

k2
1

=
(√

1 + (k/kso)2 + 1√
1 + (k/kso)2 − 1

)2

> 1,

at all positive energies and diverges as k4
so/k4 around the

threshold. This result for the ratio of inelastic cross sections
is applicable not only in the ultracold region, but at arbitrary
energy as a result of the time-reversal symmetry [35]. To put
it into perspective, we note that in the absence of SOC, the
two inelastic cross sections are strictly equal at all energies
as guaranteed by a combination of time-reversal and parity
conservations. The two universal ratios are compared in Fig. 5.
In an ultracold sample with SOC, the |1〉in state has a finite

FIG. 5. (Color online) The universal ratios of inelastic scattering
cross sections, σ [|1〉in → |3〉out]/σ [|3〉in → |1〉out], with (solid line)
and without SOC (dash-dot line), as a function of k. The result
with SOC is guaranteed by the time-reversal symmetry to be
valid at all energies. The result without SOC is guaranteed by a
combination of time-reversal and parity conservations to be valid at
all energies. The difference is due to the break of parity conservation
by SOC.
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cross section to be converted into |3〉out, and the |3〉in state
interacts mostly elastically, namely remains in the |3〉out,
interactions in other states are negligible. Independent of
initial statistical distribution, such a system has a single unique
steady state to evolve into: one made of only particles in the
lower-energy helicity state. We recall that the spin states of
|3〉in and |3〉out as specified in Eqs. (11) and (14), respectively,
correspond to both atoms in their lower helicity states. In other
words, a system of pure handedness develops spontaneously
through interactions.

V. CONCLUSIONS

In conclusion, we have developed a general formalism
for the scattering of two spin- 1

2 particles in the presence
of an isotropic SOC of the Rashba type. This represents a
rigorous first attempt for a complete formulation of cold atom
scattering in a non-Abelian gauge field. We have derived the
universal analytic results in the ultracold regime and discussed
their implications. Of particular importance is the modified
scattering properties at low energies which shines new light on
the active research into the many-body physics of cold atoms

with synthetic gauge fields. Many of the concepts introduced
are generally applicable, and provide important guidance for
investigations of other spin systems as well as anisotropic
SOC. The theory developed here thus constitutes part of an
essential foundation for understanding interacting many-body
and few-body systems with SOC.

All of our results presented have been independently
verified through analytic solutions for a square-well model
potential [39]. The generality of our formulation and the
incorporation of MQDT allow its easy generalization to
virtually arbitrary energy including the energy region of
E < 0. These topics will be addressed elsewhere.
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