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We present a quantum theory of ion-atom interactions that is applicable at energies comparable to or smaller
than the atomic hyperfine splitting and takes proper account of the effects of identical nuclei. The theory reveals
the subtlety and the complexity of cold ion-atom interactions including the change of threshold behavior due to
hyperfine splitting and the existence of a large number and a variety of scattering resonances between hyperfine
thresholds. We show how this complexity is described, efficiently and at a quantitative level, using a multichannel
quantum-defect theory that we present here for ion-atom interactions. Such an efficient description is a key
enabling element to understand few-body and many-body quantum systems involving ions.
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I. INTRODUCTION

One of the fundamental contributions of cold-atom physics
has been its revelation of universal behaviors in quantum
many-body [1–3] and few-body systems [4–6]. Excluding
scaling, ultracold atomic systems behave the same with their
only differences being characterized by a few parameters
such as the scattering length. At a more fundamental level,
such universal behaviors have their origin in the universal
ultracold two-body interaction as described by the effective
range theory [7–10]. Since this theory quickly breaks down
at slightly higher energies and at shorter distances, it is
natural to ask the question of whether universal behaviors exist
beyond the ultracold energy regime and at higher densities,
and whether they exist for systems of mixed species of, e.g.,
atoms, ions, and electrons. These are important questions in
physics, the answers to which will determine the degree we
can understand the world around us, including phenomena as
diverse as reactive processes in atomic collisions, chemical
reactions, and high-Tc superconductivity.

The quantum-defect theory (QDT) for atom-atom [11–16]
and ion-atom interactions [17–21] has served to establish
the existence of universal behaviors far beyond the ultracold
regime in atomic interactions. They imply universal behaviors,
over a wide range of temperatures, in processes such as
molecular formulation involving ions

A+ + A + A → A+ + A2, (1a)

→ A + A+
2 . (1b)

Specializing to the H atom, these three-body reactions con-
stitute mechanisms for H2 formation that are not yet fully
understood, and can potentially change the prevailing belief
that H2 in interstellar medium are formed mainly on grain
surfaces [22]. For an Rb atom, process (1a) for the formation
of Rb2 has been observed in a recent cold-ion experiment [23].

While the prospects of few-body theories built upon better
understandings of pairwise interactions would seem clear
and straightforward [24–27], their actual implementation and
successes depend critically not only on the accuracy of the
underlying two-body theories, but also on their efficiency
and simplicity, especially in their descriptions of resonances.

Two-body theories of such characteristics have not been
fully established beyond the ultracold regime for fundamental
atomic interactions. They are highly nontrivial for systems
with fine or hyperfine structures because of their multichannel
characteristics, and especially so for ion-atom interaction
because of its rapid energy dependence and generally large
number of contributing partial waves [20,21,28].

In this paper, we present a multichannel quantum-defect
theory (MQDT) for ion-atom interactions and illustrate its
application to resonant charge exchange of group I and II and
helium atoms. It is used both to illustrate the complexity of
cold ion-atom interactions and to show how such complexity
can be described efficiently and quantitatively using MQDT,
to establish it as the ion-atom component of future few-body
theories involving ions. For the seemingly simple process of
resonant charge exchange, earlier numerical theories [28–30]
have not fully accounted for the effects of hyperfine structure,
limiting their range of applicability to approximately 1 K and
above. We show that a proper treatment of hyperfine structure
leads to qualitatively different behaviors for cold ion-atom
interactions including a change of threshold behavior for
hyperfine-changing collisions. We further show that the small
energy scale associated with ion-atom interactions [18,20,21]
is such that there exist a large number of resonances: a collec-
tion of shape, Feshbach, and diffraction resonances [18,21],
even within the small energy interval of a hyperfine splitting
(∼0.1 K). We show how such complexity is fully characterized
using MQDT with a small number of parameters such as the
atomic polarizability, and the gerade and ungerade scattering
lengths.

II. THEORY

Consider the interaction of an atom (group I or II or He)
of nuclear spin I1 in its ground electronic state with an ion of
identical nucleus (I2 = I1) also in the ground electronic state.
At low energies, the relevant processes, including elastic, m-
changing, and hyperfine-changing processes, can be described
for group I atoms by

A(F1i ,M1i) + A+(F2,M2i) → A(F1j ,M1j ) + A+(F2,M2j ),

(2)
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and for group II atoms or He by

A+(F1i ,M1i) + A(F2,M2i) → A+(F1j ,M1j ) + A(F2,M2j ).

(3)

Here F1 = I1 ± 1/2 is the total angular momentum corre-
sponding to the 2S atomic (or ionic) electronic state, and
F2 = I2 = I1 is the total angular momentum corresponding
to the 1S state. The M’s are the corresponding magnetic
quantum numbers. The subindices i and j refer to the internal
states before and after the collision. In such an interaction
involving only S electrons, the total “spin” angular momentum
F = F1 + F2, and the relative orbital angular momentum l ,
are independently conserved. The scattering amplitudes, for
processes of Eqs. (2) and (3), are given by [31]

f ({F1iM1i ,F2M2i}ki → {F1jM1j ,F2M2j }kj )

= −
∑

lmFM

2πi

(kikj )1/2
Y ∗

lm(k̂i)Ylm(k̂j )

×〈F1jM1j ,F2M2j |FMF 〉[SFl(E) − 1]ji

×〈FMF |F1iM1i ,F2M2i〉, (4)

with the corresponding differential cross section given
by [31,32]

dσ

d�j

({F1iM1i ,F2M2i}ki → {F1jM1j ,F2M2j }kj )

= kj

ki

1

2
(|f (i → j,kj )|2 + |f (i → j, − kj )|2), (5)

where f (i → j ) is a short-hand notation for the amplitude
of Eq. (4). In Eq. (4), 1 is the unit matrix and SFl is the S

matrix defined in the FF coupled fragmentation channels that
diagonalize the hyperfine interaction [31]. �ki,j are the initial
and the final relative momenta in the center-of-mass frame,
and Ylm are the spherical harmonics. In Eq. (5), �j is the solid
angle associated with the direction of the final momentum �kj .
The channel structure is given in Table I.

Many different cross sections can be derived. In particular,
the total cross sections for elastic (include m-changing) col-
lisions and the hyperfine excitation or deexcitation processes

TABLE I. Channel structure for ion-atom interactions of the type
2S + 1S with identical nuclei of spin I2 = I1. For each partial wave
l, it consists of a set of two-channel problems for 1/2 � F � 2I1 −
1/2, and a single-channel problem for F = 2I1 + 1/2. The two FF

coupled fragmentation channels, {I1 − 1/2,I1} and {I1 + 1/2,I1}, are
separated by the atomic (or ionic) hyperfine splitting �Ehf . The JI

coupling, defined by J = J1 + J2, I = I1 + I2, and F = J + I , is
used in a frame transformation for the short-range Kc matrix.

F FF coupling {F1,F2} JI coupling {J,I }
1/2 � F � 2I1 − 1/2 {I1 − 1/2,I1} {1/2,F − 1/2}

{I1 + 1/2,I1} {1/2,F + 1/2}
F = 2I1 + 1/2 {I1 + 1/2,I1} {1/2,2I1}

are given by

σ ({F1i ,F2} → {F1j ,F2}) = π

(2F1i + 1)(2F2 + 1)k2
i

×
∑
F l

(2l + 1)(2F + 1)
∣∣SFl

ji − δji

∣∣2
, (6)

where δij is the standard Kronecker delta. We will calculate the
S matrices both numerically and using MQDT, and compare
the resulting cross sections.

In numerical calculations, the coupled-channel (CC) equa-
tions in the FF -coupled basis are set up using the 2�+

g,u

molecular potentials and the atomic hyperfine splitting in
a way as outlined in Ref. [31]. The potentials chosen are
those constructed in our earlier work [20]. The CC equations
are integrated numerically using a hybrid propagator [33,34]
constructed similarly to the one used in the Hibridon scattering
code [35].

The MQDT for ion-atom interactions consists of the
formulation of Ref. [15] in combination with the QDT
functions for the −1/R4-type potential as detailed in Ref. [21].
It takes full advantage of the physics that both the energy
dependence [13] and the partial wave dependence [14] of
the atomic interaction around a threshold are dominated by
effects of the long-range potential, which are encapsulated in
the universal QDT functions. The short-range contribution is
isolated to a short-range Kc matrix that is insensitive to both
the energy and the partial wave. For an N -channel problem
and at energies where all channels are open, the MQDT gives
the physical K matrix, in our case the KFl , as [15]

KFl = −(
Zc

f c − Zc
gcK

c
)(

Zc
f s − Zc

gsK
c
)−1

, (7)

where Zc
xy’s are N × N diagonal matrices with elements

Zc
xy(εsi,l) being the Zc

xy functions [21] evaluated at scaled
energy εsi = (E − Ei)/sE relative to the respective chan-
nel threshold Ei . Here sE = (�2/2μ)(1/β4)2 and β4 =
(μαA/�

2)1/2 are the characteristic energy and the length
scales, respectively, associated with the polarization potential,
−αA/2R4, with μ being the reduced mass and αA being the
static polarizability of the atom. At energies where No channels
are open, and Nc = N − No channels are closed, it gives [15]

KFl = −(
Zc

f c − Zc
gcK

c
eff

)(
Zc

f s − Zc
gsK

c
eff

)−1
, (8)

where

Kc
eff = Kc

oo + Kc
oc

(
χc − Kc

cc

)−1
Kc

co, (9)

in which χc is a Nc × Nc diagonal matrix with elements
χc

l (εsi ,l) [21], and Kc
oo, Kc

oc, Kc
co, and Kc

cc, are submatrices
of Kc corresponding to open-open, open-closed, closed-open,
and closed-closed channels, respectively. Equation (8) is
formally the same as Eq. (7), except that the Kc matrix
is replaced by Kc

eff that accounts for the effects of closed
channels. From the physical K matrix, the physical S matrix
is obtained from SFl = (1 + iKFl)(1 − iKFl)−1 [31].

This formalism works the same for all group I and II and
He atoms interacting with its corresponding ion. In such an
application, the short-range Kc matrix, defined in the FF -
coupled fragmentation channels, can be obtained from two
single-channel Kc matrices, Kc

g,u(ε,l), or their corresponding
quantum defects, μc

g,u(ε,l), through a frame transformation,
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as detailed in Appendix A. In its simplest implementation,
the MQDT describes any one of these systems using three
parameters, the atomic polarizability, and the gerade and
ungerade scattering lengths, plus two more atomic properties
that are usually well known to great precision: the hyperfine
splitting and the atomic mass. When more accurate results are
desired over a greater range of energies, the energy and the
partial wave dependences of the short-range parameters can
be incorporated as needed.

III. SAMPLE RESULTS FOR 23Na +23 Na+

We illustrate our theory with results for 23Na +23 Na+,
representative of typical behaviors of alkali-metal atoms. The
results for hydrogen, highly relevant in astrophysical appli-
cations [36–38] including H2 formation mentioned earlier,
will be presented elsewhere. 23Na has a nuclear spin of
I1 = 3/2, a hyperfine splitting between F1 = 1 and 2 states
of �Ehf/h ≈ 1771.6 MHz [39] (�Ehf/kB ≈ 0.08502 K),
and a polarizability of αA = 162.7 a.u. [40]. In the sim-
plest MQDT implementation, μc

g,u are taken to be partial
wave independent constants μc

g(ε,l) ≈ μc
g(0,0) = 0.42823

and μc
u(ε,l) ≈ μc

u(0,0) = 0.82922, corresponding to s wave
scattering lengths of agl=0 = 423.51 a.u. for the gerade
state and aul=0 = −3104.8 a.u. for the ungerade state [20].
The results, which we call the baseline MQDT results, are
illustrated in Figs. 4–6 of Appendix B. They show that even
the simplest MQDT parametrization gives good descriptions
of Na + Na+ up to around 0.4 K, with differences being mainly
associated with resonances in high partial waves.

More accurate results over a greater range of energies can
be obtained by incorporating the energy dependence, and
especially, for the range of energy under consideration, the
partial wave dependence of the short-range parameters. These
weak dependences are well described by expansions

μc
g,u(ε,l) ≈ μc

g,u(0,0) + bμ
g,uε + cμ

g,u[l(l + 1)], (10)

in which the parameters b
μ
g,u and c

μ
g,u characterize the energy

and the partial wave dependences of the quantum defects
for the gerade and ungerade states, respectively. They can
be determined easily through single-channel calculations at
a few energies and for a few partial waves. For energies up
to a few Kelvin, the energy variation of μc is found to be
negligible, namely, b

μ
g,u ≈ 0, and we find c

μ
g = 5.265 × 10−4

and c
μ
u = 1.030 × 10−3. Figures 1–3 depict the total hyperfine

deexcitation cross section, the total elastic cross section, and
a sample partial elastic cross section, respectively, in which
the MQDT results are evaluated with this l-dependent μc.
They show that with the addition of two more parameters (one
per channel) that characterize the partial wave dependences
of the short-range parameters, MQDT provides quantitatively
accurate results that are in full agreement with numerical
results and cover the entire energy range of 0 to 3 K in which
hyperfine and quantum effects are the most important (see also
Appendix C).

More specifically, Fig. 1 shows the total cross section for
hyperfine deexcitation in which the Na atom is deexcited from
its F1 = 2 hyperfine state to its F1 = 1 hyperfine state. In
earlier studies of resonant charge exchange [28–30] using
elastic approximation [41], the deexcitation cross section goes

FIG. 1. (Color online) Comparison of the total hyperfine deexci-
tation cross sections from channel {F1 = 2,F2 = 3/2} to channel
{F1 = 1,F2 = 3/2} from MQDT (solid line) and the numerical
method (dashed line). The vertical dashed line identifies the upper
hyperfine threshold located at E2/kB ≈ 0.08502 K, around which
the cross section diverges as (E − E2)−1/2.

to a constant at the threshold [28,37,38]. Figure 1 shows the
altered threshold behavior with the proper treatment of the
hyperfine structure. The deexcitation cross section behaves as
(E − E2)−1/2 above the upper threshold, implying a constant
rate (of the order of 10−9 cm3s−1) in the zero temperature limit,
as opposed to a zero rate. The hyperfine excitation cross section
can be obtained from a detailed balance relation, implied in
Eq. (6) and guaranteed by the time-reversal symmetry [42].

Figure 2 depicts the total cross sections for elastic scattering
in the lower channel {F1 = 1,F2 = 3/2}, in which the atom

FIG. 2. (Color online) Comparison of the total elastic cross sec-
tions in the lower channel {F1 = 1,F2 = 3/2} from MQDT (solid
line) and the numerical method (dashed line). The vertical dashed
line identifies the upper hyperfine threshold at 0.08502 K.
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FIG. 3. (Color online) Partial wave contribution to the elastic
cross section of Fig. 2 from l = 5 and F = 5/2. There are seven
resonances within the hyperfine splitting that are labeled with
numbers 1 through 7. Their detailed characteristics are tabulated
in Table. II. The vertical dashed line identifies the upper hyperfine
threshold.

stays in the lower hyperfine level (but its M1 may change). It
shows the complexity of ion-atom interaction as a result of the
rapid energy variation induced by the long-range polarization
potential. Even within a small energy interval of a hyperfine
splitting (∼0.085 K), the small energy scale associated with
the long-range potential, sE ≈ 2.21 μK, is such that there are
many contributing partial waves [more than

√
2(ε/sE)1/4 ∼ 20

[20] at the upper threshold]. Each partial wave contribution
contains a variety of resonances, which, in the energy region
below the second threshold, include Feshbach resonances in
addition to shape and diffraction resonances [18,21].

Figure 3 depicts the partial wave contribution from l = 5
and F = 5/2, for which we illustrate MQDT analysis of
the resonances. There are seven resonances between the two
hyperfine thresholds. The resonance positions, which can be
defined in this region as the energies at which the cross section
reaches its unitarity limit, can be found as the solutions of

χ̃ c
l (εs) − Kc

eff = 0, (11)

where χ̃ c
l (εs) = Zc

f s/Z
c
gs [21]. The widths of the resonances,

�l , more specifically the scaled widths, �sl ≡ �l/sE , can be
shown to be given by

�sl = − 2[
Zc

gs(εsl,l)
]2[ dχ̃ c

l

dεs

∣∣
εs1l

+ Kc
ocK

c
co

(χc
l −Kc

cc)2
dχc

l

dεs

∣∣
εs2l

] , (12)

where εs1l and εs2l are the scaled resonance positions rel-
ative to the lower and the upper thresholds, respectively.
Equations (11) and (12) are part of the multichannel gen-
eralizations of the concept of resonance spectrum and the
corresponding width function [21]. They describe the pole
structures of the physical K matrix that has to be understood
efficiently in applications beyond two-body physics [25–27].
Table II gives their characterizations of all resonances labeled

TABLE II. Positions, widths, and classifications of the seven
resonances labeled in Fig. 3.

Resonance Energy/kB (K) Width/h (MHz) Type

1 1.801 × 10−4 1.562 × 10−2 Shape
2 8.795 × 10−3 − 1.573 × 102 Diffraction
3 2.600 × 10−2 − 3.235 × 102 Diffraction
4 3.970 × 10−2 1.030 × 102 Feshbach
5 5.271 × 10−2 − 5.669 × 102 Diffraction
6 7.085 × 10−2 3.946 × 101 Feshbach
7 8.370 × 10−2 1.647 × 101 Feshbach

in Fig. 3. Resonances of negative widths are diffraction reso-
nances corresponding to reductions of density of states [18,21].
Resonances of positive widths can be either shape or Feshbach
resonances. They can be distinguished by comparing their
locations with those of the “bare” shape resonances associated
with the lower open channel and the bare Feshbach resonances
associated with the upper closed channel. We note that while
the resonances in a single partial wave tend to be smeared in
the total cross section (Fig. 2) due to the summation over a large
number of contributing partial waves, they are in principle
observable in photodissociation of a molecular ion [43] from
an excited rovibrational state (provided the molecular ion
temperature T is such that kBT is smaller than the spacing
between the features one intends to resolve).

IV. CONCLUSIONS

In conclusion, we have presented a MQDT for ion-atom
interactions and illustrated its application to resonant charge
exchange. The theory provides a systematic and basically an
analytic description of ion-atom systems in its most complex
energy regime where quantum effects are important. Other
than well-known atomic properties such as the atomic mass,
hyperfine splitting, and the atomic polarizability, different
group I and II and He atoms differ primarily only in two
parameters such as the gerade and ungerade scattering lengths
or quantum defects, and secondarily (when interest is over a
greater range of energies) in two more parameters c

μ
g,u that

characterize their partial wave dependences. Theoretically,
MQDT gives a complete understanding and characterization
of threshold behaviors and complex resonance structures, and
helps to overcome the sensitive dependence of cold atomic
interactions on short-range potentials [20]. Computationally,
MQDT is much more efficient than numerical calculations
even when the QDT functions are calculated on the fly.
Since the QDT functions are universal mathematical functions
that are the same for all applications, and can be computed
to arbitrary precision with efficient algorithms [21], their
computation can be further accelerated to be as efficient as
most other mathematical special functions. We believe that the
systematic and efficient understanding of ion-atom interactions
that our theory provides, especially in the cold temperature
regime where quantum effects are important, will be the key
to systematic understanding of quantum few-body systems,
chemical reactions, and many-body systems involving ions.
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APPENDIX A: FRAME TRANSFORMATION

We briefly outline the frame transformation giving the
short-range Kc matrix in the FF -coupled fragmentation chan-
nels in terms of two single-channel Kc matrices, Kc

g,u(ε,l), or
the corresponding single-channel quantum defects μc

g,u(ε,l),
which are related by [21]

Kc
g,u(ε,l) = tan

[
πμc

g,u(ε,l) + π/4
]
. (A1)

From Kc
g,u(ε,l), the Kc matrix in the JI coupling is

diagonal, with diagonal elements given by (Kc
g + Kc

u)/2 ±
(−1)F+l−1/2(Kc

g − Kc
u)/2 for two channels as ordered in

Table I of the main text. From this Kc(JI ), the Kc matrix
in FF coupling is obtained by a frame transformation [15,31]

Kc = UF †Kc(JI )UF , (A2)

where

UF = (−1)2F+1

√
2(2I1 + 1)

×
(−√

2I1 − F + 1/2
√

2I1 + F + 3/2√
2I1 + F + 3/2

√
2I1 − F + 1/2

)
. (A3)

We emphasize that for energies comparable to or smaller
than atomic hyperfine splitting, the frame transformation
applies only to the short-range Kc matrix, not the physical
K matrix [15], nor the scattering lengths.

APPENDIX B: BASELINE RESULTS FROM
THE SIMPLEST PARAMETRIZATION

In the simplest MQDT parametrization, one ignores both
the energy and the partial wave dependences of the short-
range parameters, corresponding to the approximation of
Kc

g,u(ε,l) ≈ Kc
g,u(ε = 0,l = 0), or equivalently, μc

g,u(ε,l) ≈
μc

g,u(ε = 0,l = 0), where Kc
g,u(0,0) and μc

g,u(0,0) are related
to the s wave scattering lengths agl=0 for the g state and
aul=0 for the u state [21]. We call results from this simplest
parametrization the baseline MQDT results.

For 23Na + 23Na+, the baseline MQDT results are obtained
using Kc

g(0,0) = −1.5953 and Kc
u(0,0) = 0.25416 from our

previous work [20]. They correspond to μc
g(0,0) = 0.42823

and μc
u(0,0) = 0.82922, or agl=0 = 423.51 a.u. and aul=0 =

−3104.8 a.u., for the g and the u states, respectively. Figure 4
depicts the baseline MQDT result for the total hyperfine de-
excitation cross section and its comparison with the numerical
result. Figure 5 depicts a similar comparison for the total
elastic cross section in the lower channel. Figure 6 depicts the
baseline partial elastic cross section for l = 5 and F = 5/2
in the lower channel {F1 = 1,F2 = 3/2} and its comparison
with numerical results. They show that the simplest MQDT

FIG. 4. (Color online) Comparison of baseline MQDT results
(solid line) and numerical results (dashed line) for the total hyperfine
deexcitation cross sections from channel {F1 = 2,F2 = 3/2} to
channel {F1 = 1,F2 = 3/2}.

parametrization gives good descriptions of the Na + Na+
interaction up to around 0.4 K, except for resonances from high
partial waves. Beyond 0.4 K, the l dependence, as shown in the
main text, begins to have more substantial effects. At higher
energies, such as 10 K and beyond, the energy dependence of
the short-range parameter, induced by interactions of shorter
range than the polarization potential, will also come into play.

To put the baseline MQDT results into perspective, we note
that the theory at this level uses exactly the same number of
parameters as one would have used in an effective range theory
(ERT) for ion-atom interactions [10,28]. For 23Na + 23Na+,
the ERT is applicable only for ε 
 sE ≈ 2.21 μK. At

FIG. 5. (Color online) Comparison of baseline MQDT results
(solid line) and numerical results (dashed line) for the total elastic
cross sections in channel {F1 = 1,F2 = 3/2}.
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FIG. 6. (Color online) Comparison of baseline MQDT results
(solid line) and numerical results (dashed line) for the partial elastic
cross sections for l = 5 and F = 5/2 in channel {F1 = 1,F2 = 3/2}.

0.4 K, there are
√

2(ε/sE)1/4 ∼ 29 number of partial waves
above the barrier making significant contributions [20]. The
MQDT has expanded the energy range described by the same

parameters by more than five orders of magnitude, including
the descriptions of all tens of partial waves contributing in
this energy range. This is achieved purely through a better
theoretical formulation and a better understanding of the QDT
functions.

APPENDIX C: OTHER COMMENTS

Above 1 K for Na, or more generally above 10 times
hyperfine splitting for other atoms, the elastic approxima-
tion [41] becomes gradually applicable, and the resonant
charge exchange reduces to two single-channel problems that
have been more extensively studied. Even in this energy range,
however, the QDT remains helpful in addressing issues such as
the potential existence of extremely narrow shape resonances
and their characterizations [21].

Due to the sensitive dependence of cold ion-atom in-
teraction on the short-range potential [20], the real pa-
rameters, such as agl=0 and aul=0, for almost all atomic
systems other than hydrogen, cannot be accurately deter-
mined from the first principles. They need to be fixed
experimentally. The QDT and MQDT allow for their sim-
ple determination from a few experimental data points
for either the highly excited molecular-ion rovibrational
spectrum, or the resonance positions from the dissociation
spectrum [43].
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