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Proton-hydrogen collisions at low temperatures
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We study the proton-hydrogen collision in the energy range from 0 to 5 K where the hyperfine structure of
the hydrogen atom becomes important. A proper multichannel treatment of the hyperfine structure is found to be
crucial at cold temperatures compared to the elastic approximation traditionally used at higher temperatures. Both
elastic and hyperfine-changing inelastic processes are investigated, using both the multichannel quantum-defect
theory (MQDT) and the coupled-channel numerical method. Results from the two methods show excellent
agreement with MQDT providing an efficient and basically analytic description of the proton-hydrogen interaction
throughout this energy range. We also discuss the validity of the elastic approximation and its relation to other

methods.
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I. INTRODUCTION

The low-energy proton-hydrogen scattering has been in-
vestigated theoretically throughout the past six decades with
increasing accuracy and expanding energy range [1-7]. It is
important for the understanding of the physics in planetary
atmospheres [5,8] and in intergalactic media [9], especially
for the interpretation of the brightness of the 21-cm transition,
which depends essentially on the spin temperature of atomic
hydrogen [8—11].

The proton-hydrogen scattering is also of considerable
interest in other contexts. The system itself is one of the
arrangements of a fundamental three-body systemofe™ + p +
p. Accurate results for the proton-hydrogen scattering can thus
be used as a benchmark for testing three-body theories, in arole
similar to the electron-hydrogen scattering in understanding
e~ +e” + p [12,13]. More importantly, an accurate and
efficient description of the proton-hydrogen interaction is a
prerequisite for understanding other fundamental three-body
systems such as p + H + H and e~ + p + H, which are of
fundamental importance both theoretically and in astronomical
applications such as the H, formation [14].

While past studies of proton-hydrogen scattering have
covered most of the energy range that is of astrophysical
interest, the one uncharted territory is the regime of cold
and ultracold temperatures. The lowest energy investigated
in previous works is 107* eV [4,6] (equivalent to 1.16 K),
which is about an order of magnitude greater than the hyperfine
splitting of the atomic hydrogen (equivalent to about 0.07 K),
and they have both relied on the elastic approximation [15]
that neglects the hyperfine structure. Going below this energy
and into the cold and ultracold temperature regimes, the
hyperfine interaction is expected to play an important role
while the elastic approximation breaks down, similar to what
has been shown for the hydrogen-hydrogen scattering using a
multichannel numerical method [16].

In this work, we apply the multichannel quantum-defect
theory (MQDT) for ion-atom interactions, developed recently
[17] that properly accounts for the hyperfine structure, to
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provide an efficient and accurate description of the proton-
hydrogen scattering in the cold and ultracold regimes. For
theoretical understanding and comparison, we also present the
results from the coupled-channel (CC) numerical method and
discuss the validity of the elastic approximation. The paper
is organized as follows. In Sec. II, we outline, in a unified
theoretical framework, three methods of treating low-energy
proton-hydrogen scattering: the MQDT, the CC numerical
method, and the elastic approximation, and discuss their
relations. In Sec. III, we compare and discuss the results from
different methods, with an emphasis on the cold temperature
regime of 0 to 5 K. We conclude in Sec. IV.

II. THEORY

The scattering of a proton with a hydrogen atom in
its ground 2S electronic state falls into the category of
the atom-ion interaction of the type 25 + 'S with identical
nuclei of spin I, = I} = %, which was studied in Ref. [17].
With consideration of the hyperfine structure, all relevant
low-energy processes, including elastic, M-changing, and
hyperfine-changing processes, can be expressed as

H(F;,M\;)+ HY(F,My;) — H(Fy;,M\;)+ H*(F>,M;).
(1)

Here, F; = 1) + % is the asymptotic total angular momentum
corresponding to the 2S electronic state of the hydrogen
atom, and F, =, =1 = % is the asymptotic total angular
momentum of the proton. The M’s are the corresponding
magnetic quantum numbers. The subindices i and j refer to
the internal states before and after the collision, respectively.

A. Radial coupled-channel equations
The Hamiltonian describing the system of interest can be
written as

h2
H = —>—V¢ + Hgo + Har, (2)
2p
where  is the reduced mass and R is the internuclear
distance. Hys represents the hyperfine interaction and Hpo
is the adiabatic Born-Oppenheimer (BO) Hamiltonian.
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In atomic interactions that involve only S electrons, the
total “spin” angular momentum F = F| 4+ F, and the relative
orbital angular momentum of the nuclei ! are independently
conserved. In this case, the wave function, for each F and [,
can be written as

g FMim [Z d)fM(R)Gfl(R)/R} Yim(R). 3)
b

Here, M and m are projections of F and I on a space-fixed
axis, respectively. ®/ ™ (R) is the channel function of channel
b that belongs to an F manifold (the subindex a, used later,
also represents a channel that comes from the same set of
channels as channel b), Glf !(R) is the corresponding radial
wave function, and Y;m(R) is the spherical harmonics. The
angular momentum coupling schemes that define different sets
of channel functions are described in the next subsection.
We substitute Eq. (3) into the Schrodinger equation

H'(!fFMlm — EwFMlm. (4)

Upon using the orthogonality properties of the channel
functions and ignoring nonadiabatic couplings, we arrive at
a set of CC equations for components of G/

R d> 10+ D2 .

(“Swim + G <) o

+ ) [VER) + VE(R]GL(R) =0, (5)
b

where

ViO(R) = (@M | Hpo | @) M), (6a)

VIN(R) = (®FM| Hye| 0f M), (6b)
both of which are independent of M.

B. Channel structure and frame transformation

For each partial wave [, the total number of states is 2(21; +
1)> = 8, and the total number of channels is 41, + 1 = 3.
These three channels are separated into two uncoupled groups
for the two different F’s. For 1 < F < 2I; — 4, which makes

F = 1, there are two coupled channels. For F = 2I; + 1 = 3,
there is only one channel and only elastic scatterings can
happen.

We adopt two angular momentum coupling schemes to de-
compose F, following the theory of Ref. [18]. The FF coupling
scheme F = F| + F, forms the fragmentation channels, or
FF channels, that diagonalize the total Hamiltonian when R
goes to infinity. The scattering boundary conditions, hence the
S matrix, are defined in the FF channels. The JI coupling
scheme F = J + I forms the condensation channels, or JI
channels, that diagonalize the adiabatic BO Hamiltonian,
hence approximately diagonalize the total Hamiltonian in
the short range due to the insignificance of the hyperfine
interaction in that region. Here, J is the total electronic angular
momentum, which can only have a magnitude of %, and
I =1,+1I, is the total nuclear spin. The JI channels are
the most directly related to the BO potential curves ZZ;W and
are channels in which the short-range K¢ matrix of the MQDT
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TABLE I. Channel structure for the proton-hydrogen interaction
in the ground electronic states. Here, F = F| 4 F is the total “spin”
angular momentum (including nuclear spin), J is the total electronic
angular momentum, and I = I, + I, is the total nuclear spin.

FF coupling JI coupling
Total F {F1,F2} {J.1}
12<F<2,—-1/2 {nh—1/2,1,} {1/2,F — 1/2}

{1, +1/2,1,} {1/2,F +1/2}
F=2I+1/2 {h+1/2,1) {1/2,21,}

formulation [17] has the simplest representation. The detailed
channel structure is illustrated in Table I.

For F = %, the asymptotic thresholds E;| and E; of the
two coupled channels in the FF coupling basis are separated
by the atomic hyperfine splitting E; — E; = AE™, known as
the 21-cm line for hydrogen atoms. It is given by AE™ /h ~
1420.405 751768 MHz [19] (AE™ /kp ~ 0.068 168 729 K).
Following the theory of Ref. [18], the FF and the JI coupling
basis functions are related by a frame transformation given by
a2 x 2 orthogonal matrix

(_1)2F+1
V22hL + D

AL =F¥I2 ¢211+F+3/2> .
X<\/211+F+3/2 van=r¥i) ¢

F_

The ordering of the channels here as well as in the matrices
later in this paper follows the ordering in Table I.

C. Scattering amplitude and cross sections

The scattering amplitudes for processes of Eq. (1) that
satisfy the scattering boundary conditions in the FF channels
are given by [18]

SUF M, FMyitk; — {FijMyj,FoMoj)k ;)

2mwi .o N
=-> Ty Vim kYo k)
ity

ImFM
X (FijMy;, FMy;|FME)[S™ (€) — 11}
X (FMp|FiiMyi, FMy;), ®)

where 1 is the unit matrix and S’ is the S matrix defined in
the FF channels [18]. hk; ; are the initial and the final relative
momenta in the center-of-mass frame.

In terms of the scattering amplitude of Eq. (8), the differ-
ential cross section that properly accounts for the symmetry
property of identical nuclei is given by [18,20]

do

ﬁ({FliMli,FzM%}ki — {F1jM,;,F,M>;}k;)
j

kil
= k—jinf(i = KD+ IfG — j.—kHP. (9)

A

It is symmetric for opposite directions k j and —k;, as one
should expect for identical nuclei.

Many different cross sections can be derived from the
differential cross section. In particular, the total cross sections
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for elastic (include M-changing) collisions, and the hyperfine
excitation and deexcitation processes, after averaging over
initial states and summing over final states, are given by

o({Fi;,F2} — {F1;,F2})
N T
C QF;+DRR )

. > @+ D@F +1)|SE -85
L Fl

(10)

All cross sections are determined by the S matrix, which can be
obtained by solving the CC equations using either MQDT or
numerical methods, as discussed in the next two subsections.

D. MQDT

One way to obtain the S matrix is MQDT. The MQDT for
ion-atom interactions, as demonstrated in Ref. [17], consists
of the formulation of Ref. [21] in combination with the
QDT functions for the —1/R*-type potentials as detailed in
Ref. [22]. It takes full advantage of the physics that both the
energy dependence [23] and the partial wave dependence [24]
of the atomic interaction around a threshold are dominated by
effects of the long-range potential, which are encapsulated in
the universal QDT functions. The short-range contribution is
isolated to a short-range K¢ matrix that is insensitive to both
the energy and the partial wave.

1. General formulation

For an N-channel problem at energies where all channels
are open, the MQDT gives the physical K matrix, in our case
the K/, as [21]

K= (2%, — ¢, K°) (25, — Z5,K9) ™, (1)
where Z{;s are N x N diagonal matrices with elements
Z)fy(es,',l) being the Z)fy functions [22] evaluated at the
scaled energy €;; = (¢ —¢;)/sg relative to the respective
channel threshold ¢;. Here, sz = (h?/2u)(1/B4)* and B4 =
(uas/h*)V/? are the characteristic energy and the length
scales, respectively, associated with the polarization potential
—a 4 /2R*, with a4 being the static polarizability of the atom.

Atenergies where N, channels are open,and N, = N — N,
channels are closed, the MQDT gives [21]

KFl = _(Z;C - chKecff)(Z;'s - ngKeCff)_l’ (12)

where

Kecff = K(fo + K(fc(xc - chc)ilKC

co’

13)

in which x¢ is an N, x N, diagonal matrix with elements
X[ (€si,0) [22], and K¢, K¢, K¢, and K¢, are submatrices of
K¢ corresponding to open-open, open-closed, closed-open,
and closed-closed channels, respectively. Equation (12) is
formally the same as Eq. (11), except that the K¢ matrix is
replaced by the Kg; that accounts for the effects of the closed
channels.

From the physical K matrix, the S matrix is obtained as
[18]

S =1 +ik"ha —-ikH". (14)
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2. K° matrix and the short-range parametrization

The short-range K¢ matrix has only two independent
elements, which are two slowly varying functions of energy
and /, the single-channel K“ matrices Kéf’u(e,l ) that represent
the gerade and ungerade adiabatic BO molecular states. They
are directly related to the corresponding quantum defects
Wy (€, by [22]

K; (€)= tan[7 u§ ,(€,0) + 7 /4]. (15)

For F = % where there are two coupled channels, the K¢
matrix in the FF channels can be obtained from the one in the
JI channels through the frame transformation, given by

K¢ =UFtkUhyr, (16)
where
(Kg+K)+e(Kg—K7) 0
c(JI) __ 2
K = ( . & +K;_)_62(K§_K;.)> , (17
2

where e, = (—1)"*~1/2 = (—1).. For F = 3 where there is
only one channel, K€ is either given by K or K, depending

on whether e; = (—1)>1*+ = (=1)/*! is positive or negative:
K= 3[(Kg +K;) +er(Kg — K] (18)

In the simplest MQDT implementation, instead of two full
potential curves used in the numerical calculation, only three
constant parameters are needed besides the hyperfine splitting
and the reduced mass. The static dipole polarizability of the
hydrogen atom oy = % a.u. [25] characterizes the long-range
part of the potential. The two QDT parameters, the zero-
energy zero angular momentum single-channel K ,(0,0),
characterize the short-range part of the potential due to the
energy and partial wave insensitive nature of the short-range
interaction. They are related to the corresponding s-wave
scattering lengths by [26,27]

as /g, = [ ra-on7 kg, 0,0 + tan(nb/Z)’

=0 I'(1+b)] K¢ ,(0,0) — tan(rb/2)
where b = 1/(n — 2). It reduces to, for n = 4 [28],
K;u(0,0) +1

K¢ ,(0,0) -1

19)

ay/Bs = (20)
More accurate results over a greater range of energies can
be obtained by incorporating the energy dependence and,
especially, for the range of energy under consideration, the
partial wave dependence of the short-range parameters [17].
These weak dependencies are well described by expansions

W (6.1 ~ g ,(0,0) + by e +ck [T+ D, Q1)

in which the parameters bj , and cf , characterize the energy
and the partial wave dependencies of the quantum defects for
the gerade and ungerade states, respectively.

3. Determination of QDT parameters

The simplest MQDT implementation works well for the
first handful of partial waves for hydrogen but starts to
show noticeable deviation from the numerical calculation
when [ becomes large, thus it breaks down at energies
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TABLE II. Zero-energy QDT parameters used for the compar-
isons with numerical calculations.

goru K<(0,0) 1€(0,0) a—o (a.u.) ct
Gerade —0.35829 0.64049 —30.371 0.0116
Ungerade 1.1723 0.025 194 810.52 0.0214

where higher partial waves start to contribute significantly.
To parametrize the short-range interaction more accurately for
energies ranging from ultracold temperatures all the way to
5 K, we need to use the expansion of the quantum defects
from Eq. (21).

The zero-energy zero partial wave short-range parameters
as well as parameters by, and cg, can be determined easily
by solving the single-channel radial equations with V, , as the
potential terms at a few energies for a few partial waves. For
the energy range considered here, the energy dependence of
we is found to be negligible, namely, bs , ~ 0. To determine
the rest of the parameters, we first, for the first several partial
waves at zero energy, propagate the radial wave functions
through single-channel calculations and match them to the
proper scattering boundary conditions, which is given by

ua(R) = Aa f5(R) — K(e,)g5(R)], (22)

C

at progressively larger R until the resulting K, , converge to
a desired accuracy [24,26,28,29]. Here, f¢ and g€ at ¢ =0
are the zero-energy QDT reference functions for the —1/R*
potential given in Refs. [27,29]. Then, the resulting K (€ =
0,l) are converted into ,ug,u(e = 0,]) and fit into Eq. (21)
for various partial waves. The parameters obtained using the
potential energy curves constructed in the next section are
listed in Table II. The s-wave scattering lengths are calculated
using Eq. (20) from the corresponding single-channel K¢’s.

E. Potential energy curves and numerical method

In order to numerically calculate the S matrix to compare
to the MQDT results, and also to extract the QDT parameters
in this paper, we need to construct the potential energy terms
in Egs. (6a) and (6b) in the FF channels.

For F = %, there are two coupled channels. The hyperfine
term can be approximated as diagonal and constant in the FF
channels, which is given by

yht = 0 0 . (23)
0 AEM

The BO potential energy matrix in the FF channels is given
in terms of the matrix in the JI channels with a frame
transformation, as

VBO — UF']'vBO(JI)UF. (24)

The BO potential energy matrix in the JI channels is diagonal
and can be written as

(VetVi)+er (Ve —Vi) 0
BOWJI) _ 2
4 - 0 VetVi)—ea(Ve—Va) |2 (25)
2

in which V, , are the two BO potential energy curves for the
2 E;u molecular states, respectively.
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For F = %, there is only one channel that only opens when
the collision energy is above the upper hyperfine threshold.
The hyperfine term V" = AE™ and the BO term is given by

VBO = L{(V, + V) + e1(V, — V). (26)

To perform the numerical calculation, we need the BO
potential energy curves V, ,. For the proton-hydrogen inter-
action, the potential curves can be obtained analytically in
the prolate spheroidal coordinates following the method of
Ref. [30]. However, to simplify the calculation, we opt for
an easier way to construct these potential curves, which is
illustrated as follows. For internuclear separation R from 0.4
to 10.0 a.u., we use a cubic spline [31] to interpolate the data
points given in Ref. [4] (we will refer to this reference as Paper
I) which are calculated using the exact method of Ref. [30].
For R larger than 10.0 a.u., we use the asymptotic expansion
from Ref. [25]. More specifically,

Veu = Vo(R) F 3AV(R), 27
with F for 22; and 2%}, respectively. Here,

9 15 213 7755 1773
VoR) =~ —soe = o — = (28)

4R*  2RS  4R7T  64R® 2R°
and
R 1 25 131 3923
AV(R)=4R€ <1+ﬁ—@—m—m
145399 521989 509102915
 3840R5  46080R® 645 120R7
- 37749539911)‘ 29)
10321920R8

For R smaller than 0.4 a.u., we use fitted functions for the
inner wall, given by

R —1.0597
V,(R) = 0.835 (R— + 0.0012) —0.993, (30
0

R —1.031
Vu(R) = 0.932 (R—O — 0.000 09> +0.0896, (31)
in which Ry = 1.000 544 628 a.u. All the potential equations
are in atomic units. The two potential energy curves that we
constructed are shown in Fig. 1.

To verify the validity of our potential matrix, we compare
the single-channel s-wave short-range parameters in Table 11
with those from previous works [7,10,32,33]. It was reported
that the ungerade potential supports two molecular bound
states, one of which is extremely weakly bounded with the
bound-state energy around 10~° a.u. [33,34]. This extremely
weakly bound state makes the evaluation of the corresponding
s-wave scattering length very sensitive to the inner potential
because the corresponding K¢ parameter is very close to 1
[22], which is the singular point in Eq. (20). Thus, it is more
straightforward to compare the quantum defects, which behave
like phase shifts ranging from O to 1, instead of the scattering
lengths, because the quantum defects are more evenly defined
without any singularity. Comparing the w, ,(0,0) calculated
from the scattering lengths reported in various previous
works [7,10,32,33] with our quantum defects, we found the
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FIG. 1. (Color online) BO potential energy curves of the gerade
(solid line) and the ungerade (dashed line) states constructed in our
work for the proton-hydrogen collision.

differences to be only of the order of 10~3, comparing to 1
which is the range of variation of quantum defect. This also
confirms the insignificance of the nonadiabatic coupling since
the work of Ref. [7] included such coupling term and the work
of Ref. [32] used the three-body Faddeev equation. The effect
of off-diagonal nonadiabatic coupling can be expected to be
similarly small.

In this work, the CC equations are integrated numerically
using a hybrid propagator [35,36] constructed similarly to the
one used in the HIBRIDON scattering code [37]. It employs
a modified version of the log-derivative method of Johnson
[38] by Manolopoulos [35] at the short range, and a modified
version of the potential-following method of Gordon [39]
by Alexander and Manolopoulos [36] at the long range.
Convergence can be tested on the resulting S matrix after
being converted from the log-derivative matrix following the
method of Johnson [38].

F. Elastic approximation

At energies that are much greater than the atomic hyperfine
splitting, the hyperfine interaction can be neglected to simplify
the theory. Without the hyperfine interaction, the asymptotic
states in the JI channels are degenerate, and the potential
matrix is diagonal in the JI channels in all internuclear
separations. Thus, instead of solving the multichannel CC
equations in the FF channels, we can solve the single-channel
radial equations independently in the JI channels to obtain the
phase shifts for each channel. These phase shifts constitute the
physical K matrix in the JI channels K /1), which can then
be transformed to the physical K matrix in the FF channels
K*! and converted to the S matrix. Such is the essence of the
elastic approximation [15], as discussed in Ref. [16].

Under the elastic approximation, for% < F <2 — %, the
physical K matrix in the JI channels can be written as

(Kg+Ku)ter(Kg—Ku) 0
FIUI) _ 2
K B 0 (Kg+Ku)—ea(Ko,—Ki) |2 (32)
2
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where K, ,(e,l) = tan§;“(e) with & “(¢) being the single-
channel phase shifts of the /th partial wave for the gerade state
and the ungerade state, respectively [28]. These single-channel
phase shifts can be calculated from solving the single-channel
equations using numerical methods or single-channel QDT
[28]. Then, the physical K matrix in the FF channels can be
obtained from

Fl — UFTKFI(JI)UF, (33)
and the S matrix can be obtained from Eq. (14). For F =
21 + %, there is already only a single channel, and no further
approximation is necessary.

Applying the elastic approximation using Egs. (32), (33),
and (14), different cross sections can be expressed in terms
of Kg.(e,l) or §7"(e). Here, we present the simplified
expressions of the total cross sections given in Eq. (10) under
the elastic approximation. For the total cross sections, the zero
energy in the elastic approximation, with consideration of the
nuclear spin statistics, should be offset from the zero energy
in the multichannel treatment by the center of gravity, which
is given by (I; + 1)/(21; + 1)AE™.

The hyperfine deexcitation cross section simplifies to

e>apr ) (K, — K,
21, +1k22( * )(1+K2)(1+K3)

Ode

B

— _ 58
- 211 — v ;‘ 2+ Dsin (8¢ — &),  (34)
where oy is short foro ({1} + 1/2,1;} — {I; — 1/2,1,}). This
is consistent with the result given in Ref. [40]. If we define the
spin-exchange cross section [40] (same as the charge-exchange
cross section defined in Ref. [41]) as

oo
b4
0w =13 go: Q1 + 1ysin® (81 — &f), 35)
Eq. (34) becomes
hf i
- E>>£E 1 Oee. (36)
26 + 1

The coefficient I, /(21; + 1) takes into account the nuclear spin
statistics, and equals i for the proton-hydrogen interaction.

The corresponding hyperfine excitation cross section is
related to the deexcitation cross section by a detailed balance
relation guaranteed by the time-reversal symmetry [42], which
is given by

O I+ 1€—AE™ conp I +1
Ode N I € I '

(37
0ex 18 short for o ({1} — 1/2,1;} — {I, + 1/2,1;}), and can be
written in terms of the spin-exchange cross section as

e>>AE“f I +1
21 + 1

Oe- (38)

Oex

Therefore, for the proton-hydrogen system, the coefficient in

front of o is %.
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For the total elastic cross sections under the elastic
approximation, we define the elastic partial wave cross sections

2

u 4 K u
O'lg’ = k—2(21 + ])ﬁ
g.u

4 o e
= k—2(21 + 1)sin” §; (39)
for the gerade and the ungerade states, respectively. We also

define the total elastic cross sections as the summation of the
corresponding partial wave cross sections over [, given by

o0
g.\u __ 8.u
o' =) ot (40)
=0

The total elastic cross section in the lower hyperfine channel
oo =o({l; — 3,1y} > {I; — 1,1}}) is given by

e>>AEhf1 u 1 = u
70 gl k) + g 2 aler =)
1 1
_ Lﬁse. (41)
20 + 1

And, the total elastic cross section in the higher hyperfine
channel oy; = o ({1} + %,Il} - { + %,Il}) is given by

e>AEM 1 " 1 > u
Ohi ~ E(Utit + Ulot) + m 2 el ((Tlg — 0 )
d “2)
Y

III. RESULTS AND DISCUSSIONS
A. Multichannel treatment versus elastic approximation

We start with comparing our elastic approximation results
of the hyperfine deexcitation cross section with the spin-
exchange cross sections given in Paper I, as well as with results
from our multichannel treatment. According to Eq. (36),
the spin-exchange cross section is four times the hyperfine
deexcitation cross section under the elastic approximation
for the proton-hydrogen interaction. Therefore, we compare
our deexcitation cross-section results with the spin-exchange
cross sections given in Paper I multiplied by }1. Also, all the
cross-section results from the elastic approximation need to
be offset in energy by the center-of-gravity (I} + 1)/(21; +
DAEM =0.0511265 K. Our results from both the elastic
approximation and the multichannel treatment are obtained
using the numerical calculation.

Figure 2 shows the hyperfine deexcitation cross sections,
where the data points converted from the results given in
Paper I lie right on top of our elastic approximation results.
This demonstrates the validity of our potential energy curves
and numerical method. The results from the multichannel
treatment and the elastic approximation agree almost exactly
for energies between 5 and 30 K. The discrepancy between
the two becomes more significant when energy decreases
especially below 1 K.

Figures 3—5 show the hyperfine excitation cross sections,
the elastic cross sections in the lower hyperfine channel, and
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FIG. 2. (Color online) Comparison of the spin-exchange cross
section from Paper I multiplied by i that accounts for the nuclear
statistics (stars) and the total hyperfine deexcitation cross section
from channel {F), =1, F, = %} to channel {F; =0, F, = %} using
the multichannel treatment (solid line) and the elastic approximation
(dashed line).

the elastic cross sections in the higher hyperfine channel,
respectively. These comparisons, along with the hyperfine
deexcitation case, show that, for the proton-hydrogen inter-
action, the elastic approximation is applicable for energies
larger than 1 K, where it deviates from the multichannel
treatment by less than 5%, and becomes more accurate at
higher energies, with the deviation becoming less than 1%
once the temperature is higher than 5 K. The approximation
fails, however, for energies comparable or smaller than the
hyperfine splitting. Thus, for temperatures from ultracold up to
about 1 K, which is approximately an order of magnitude larger
than the hyperfine splitting, the elastic approximation is not

Energy/h (MHz)
3x10* 10° 6x10°

‘ | |

10°F {0, 112} to {1, 1/2}

o)

10°F

------ Elastic approximation
—— Multichannel

Total Cross section (units of a

0.1 1 10
Energy/k; (K)

FIG. 3. (Color online) Total hyperfine excitation cross sections
from channel {F; =0, F, =1} to channel {F; =1, F,=1)}
from the elastic approximation (dashed line) and the multichannel
treatment (solid line).
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FIG. 4. (Color online) Total elastic cross sections in the lower
hyperfine channel {F, =0, F, = %} from the elastic approximation
(dashed line) and the multichannel treatment (solid line).

applicable, and multichannel treatment with proper account of
the hyperfine interaction should instead be used.

The elastic approximation also gives the incorrect threshold
behavior at the upper hyperfine threshold. In previous attempts
to extend elastic approximation to lower energy with effective
range theory, a constant spin-exchange cross section with
the corresponding rate approaching zero was predicted when
energy decreases [7,10,11]. With multichannel treatment that
incorporates the hyperfine splitting, the deexcitation cross sec-
tion follows the Wigner’s threshold law [43] which diverges as
(€ — E»)~'/2 above the upper hyperfine threshold. Therefore,
the hyperfine deexcitation rate without thermal averaging

[2(e — E3)
Wee = voge = Tade

will reach a constant when the relative velocity v approaches
zero. As illustrated in Fig. 6 with results from multichannel

(43)

Energy/h (MHz)

3x10* 10° 6x10°

‘ | ]

{1, 112} to {1, 1/2}

o)

10*

...... Elastic approximation
—— Multichannel

Total Cross section (units of a

103 1 1
0.1 1 10

Energy/k; (K)

FIG. 5. (Color online) Total elastic cross sections in the upper
hyperfine channel {F;, =1, F, = %} from the elastic approximation
(dashed line) and the multichannel treatment (solid line).
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FIG. 6. (Color online) Threshold behavior of the hyperfine de-
excitation rate W, just above the upper threshold E,. The x
axis represents the temperature equivalence of the initial kinetic
energy (¢ — E)/kg. The results are produced using the multichannel
numerical calculation.

numerical calculation, the deexcitation rate rises while initial
kinetic energy decreases, until it eventually reaches a plateau
with a constant rate of 9.098 x 1071 cm?® s~! approximately.
The same threshold behavior should also be present for

electron-hydrogen and hydrogen-hydrogen collisions.

B. MQDT versus numerical calculation

In this section, we present the total cross section results from
ultracold temperature to 5 K using multichannel treatment.
In addition, we compare the results from MQDT with the
numerical calculation to demonstrate the applicability of
MQDT in this temperature regime.

Figure 7 shows the total cross sections for hyperfine
deexcitation process from the upper hyperfine threshold to

Energy/h (MHz)

10° 10 10°
C T T T
5 {1, 1/2} to {0, 1/2}
o 10°F
E L
2
c
]
©
[0}
1)
@ 10°F J 4
o
% —— MaDT
E ------ Numerical
10? = =
10 10

Energy/k (K)

FIG. 7. (Color online) Total hyperfine deexcitation cross sections
from channel {F| =1, F, = %} to channel {F}, =0, F, = %} from
MQDT (solid line) and numerical method (dashed line). The vertical
dashed line identifies the upper hyperfine threshold located at
€/ kp =~ 0.0682 K, around which the cross section diverges as
(e — Ep)7 '
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10" 10°
Energy/k; (K)

FIG. 8. (Color online) Total hyperfine excitation cross sections
from channel {F; =0, F, = %} to channel {F;, =1, F, = %} from
MQDT (solid line) and numerical method (dashed line). The vertical
dashed line identifies the upper hyperfine threshold located at
€/kp =~ 0.0682 K, around which the cross section behaves as
(e — Ex)'2.

5 K. Notice that, as mentioned in the previous section, the
deexcitation cross section follows the Wigner’s threshold law
[43], which diverges as (¢ — E,)~!/? above the upper hyperfine
threshold. MQDT results are almost exactly on top of the
numerical calculation below 1 K, and, although there is slight
deviation, the two methods still agree relatively well from
1-5 K. The discrepancy is in general within 1% which can be
attributed to slight energy dependence of the short-range QDT
parameters.

Figure 8 shows the total cross sections for hyperfine
excitation in which the hydrogen atom is excited from its
F; = 0 hyperfine state to its | = 1 hyperfine state. It behaves
as (e — E»)'/? above the upper threshold. The excitation cross
section is related to the deexcitation cross section by Eq. (37)
which is guaranteed by the time-reversal symmetry [42].

Figures 9 and 10 depict the total cross sections for elastic
scattering in the lower hyperfine channel and the higher
hyperfine channel, respectively, in which the atom remains in
the same hyperfine level after the scattering while its M| may
or may not change. The elastic cross section in the higher
hyperfine channel, just like the deexcitation cross section,
diverges as (E — E;)~!/2 above the upper threshold, implying
a constant rate in the zero-temperature limit.

Compared to our previous results on the resonant charge-
exchange problem of 2*Na +23 Nat [17], there are not any
significant resonance structures within the hyperfine splitting
for the proton-hydrogen system, even though the hyperfine
splittings of the two systems are of the same order of
magnitude. This can be attributed to the small atomic mass
and polarizability of hydrogen which give an unusually large
energy scale sy = 0.0416 K for the proton-hydrogen system
compared to other ion-atom systems (e.g., sp = 2.21 uK for
23Na 423 Na™). With such a large energy scale, the hyperfine
splitting corresponding to a scaled energy of AE™ /sp ~ 1.6
is much smaller in magnitude than the energy bin of B_(l =
0) = —105.81 that contains the least bound s state [22,44],

PHYSICAL REVIEW A 91, 032702 (2015)

Energy/h (MHz)
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FIG. 9. (Color online) Total elastic cross sections in the lower
channel {F, =0, F, = %} from MQDT (solid line) and numerical
method (dashed line). The vertical dashed line identifies the upper
hyperfine threshold at 0.0682 K.

and even smaller compared to energy bins that contain the
least bound states of higher partial waves. There is thus
little probability that a Feshbach resonance associated with
the upper threshold can appear within the hyperfine interval.
Similarly, the probability for the appearance of a shape
resonance associated with the lower threshold is very small.
As for the diffraction resonances [17,22,44], the scaled energy
of the hyperfine splitting is too small to support any. The only
resonances in proton-hydrogen scattering are the shape and
diffraction resonances above the upper hyperfine threshold.
There are two relatively visible features in all four figures. The
broader feature around 1.7 K corresponds to a shape resonance
in partial wave [ = 3, and the sharper feature around 2.8 K
corresponds to a shape resonance in partial wave [ = 4. There

Energy/h (MHz)

10° 10* 10°
106: T T \i
5 {1, 1/2} to {1, 1/2}
L
2 sl -
5%
c
9
©
b
o 10°E i
17, £
o
o
.g —— MQDT
Y Numerical J
£ Ll n n n n PR |
10 10°

Energy/k, (K)

FIG. 10. (Color online) Total elastic cross sections in the upper
channel {F), =1, F, = %} from MQDT (solid line) and numerical
method (dashed line). The vertical dashed line identifies the upper
hyperfine threshold at 0.0682 K.
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is another sharp feature around 16 K, shown in Figs. 2 through
5 from the previous subsection, which corresponds to a shape
resonance in partial wave [ = 7.

Figures 8—10 are similar to Fig. 7 in showing the agreement
between results from MQDT and the numerical calculation,
and the conclusion we drew for the deexcitation cross
section case also stands for the others. The deviation of the
MQDT results from the numerical results is within 2% for
temperatures lower than 1 K, and is within 5% for temperatures
from 1 to 5 K, for both the background and the resonance
positions. This again demonstrates the capability of MQDT
to accurately characterize multichannel ion-atom interactions
from zero energy up to several kelvin with only a handful
of parameters (five in this case), as we have demonstrated
before on the example of sodium resonant charge exchange
[17]. Also examined and verified by these comparisons is
the physical picture behind the MQDT formulation, that in
this energy regime, the energy and partial wave dependencies
are primarily due to the long-range interaction which can
be accurately characterized by the analytic solution of the
long-range potentials, and the short-range parameters are
energy and partial wave insensitive [21,22].

Computationally, MQDT is much more efficient than the
numerical calculation even when the QDT functions are
calculated on the fly. Since the QDT functions are universal
mathematical functions that are the same for all applications
and can be computed to arbitrary precision with efficient
algorithms [22], their computation can be further accelerated
to be as efficient as most other mathematical special functions.

PHYSICAL REVIEW A 91, 032702 (2015)

This computational advantage will be even more pronounced
in other applications with more coupled channels.

IV. CONCLUSIONS

In summary, we have investigated the low-energy proton-
hydrogen interaction using three different methods: the CC
numerical method, the MQDT, and the elastic approximation.
The results show that at energies comparable or smaller than
the hyperfine splitting, the effect of nuclear spin is no longer
merely statistical, but has to be treated in a multichannel
framework using either the CC numerical method or MQDT.
The differences between single and multichannel treatments
are not only quantitative, but qualitative in nature for the
threshold behavior. The MQDT method provides a simple,
systematic, and quantitatively accurate description of proton-
hydrogen interaction in this difficult multichannel regime. Its
simplicity and efficiency suggest the potential and the promise
of MQDT and its off-shell generalization in future studies of
three-body processes such as those involving p + H + H or
e +p+H.
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