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Abstract

We present a multiscale quantum-defect theory based on the first analytic solution for a two-scale long
range potential consisting of a Coulomb potential and a polarization potential. In its application to
atomic structure, the theory extends the systematic understanding of atomic Rydberg states, as
afforded by the standard single-scale quantum-defect theory, to a much greater range of energies to
include the first few excited states and even the ground state. Such a level of understanding has
important implications not only on atomic structure, but also on the electronic structure of molecules
and on atomic and molecular interactions and reactions. We demonstrate the theory by showing that
it provides an analytic description of the energy variations of the standard Coulomb quantum defects
for alkali-metal atoms.

1. Introduction

The Rydberg—Ritz formula [1, 2] for atomic spectra

1

Couly2’
(1’1 - Mljou )2

(Enjj — Eion)/Rm = — (D

was one of the very first universal properties uncovered for quantum systems, and played an important role in
the very establishment of the quantum theory. Here E;,, represents the ionization energy, Ry; = R.o/

(1 + m,/M) is the reduced mass Rydberg constant (with M (mm,) being the ion (electron) mass and R, being the
Rydberg constant), # is the principle quantum number, [ and j are the orbital and total angular momenta of the
electron, respectively. The formula asserts that despite considerable differences in atomic spectra, the Rydberg
series for different atoms differ from each other only in a Coulomb quantum defect ug‘"”l which encapsulates all
complexities of short-range interactions. This universality, which originates from the fact that a sufficiently
highly excited electron sees mostly the Coulomb potential, stimulated the development of the quantum-defect
theory (QDT) and multichannel QDT [3-6]. They have long become the standard for understanding atomic and
molecular spectra and electron-ion interactions [3-7].

The universality as represented by the Rydberg—Ritz formula with a constant pgoul is however strictly
applicable only to sufficiently highly excited Rydberg states. This is reflected, especially for atoms with highly
polarizable cores, by a significant n dependence of ul(]?"u‘ for lower lying states (see, e.g., [8—11]). Does there exist a
more general universality that applies also to the first few excited states or even the ground state, which are often
of more practical and experimental interest? The answer to this question has implications far beyond atomic
structure. Not only will it determine the degree to which other single-atom properties, such as oscillator

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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strengths, ionization cross sections, static and dynamic polarizabilities (see, e.g., [12]), follow universal behaviors
outside of the Rydberg regime. It will also determine the degree to which important atomic interaction
parameters, such as the Cs van der Waals coefficients (see, e.g., [13]), follow universal behaviors for different
atoms and different electronic states. Even further, it will determine the relations among different electronic
states of a molecule and the relations among electronic states of different molecules. The prospect for such
systematic understanding of an entire manifold of molecular electronic states can be crucial for understanding
atomic and molecular interactions and reactions, especially in excited electronic states where many of them
participate simultaneously.

This work establishes a broader universality in atomic structure as the first application of an analytic two-
scale QDT. The theory is based on our analytic solution for the ‘Coulomb+polarization’ potential of the form
—G/r — Cy/r*.1tis, to the best of our knowledge, the first analytic solution of the Schrédinger equation for a
two-scale central potential, for which no analytic solution is previously known or expected. Our solution
represents a new class of special functions and has potential for generalization to other multiscale potentials. In
applying the two-scale QDT to atomic structure, we show that the theory introduces a ‘new’ quantum defect that
has much weaker energy dependence than the traditional Coulomb quantum defects ;" that goes into the
Rydberg-Ritz formula, and the theory provides an analytic description of the n dependence of 1©°!! for Rb and
Cs atoms, down to their ground states. The results establishes, in an analytic framework, a broader universality
in atomic structure and spectra. Physically, it means that the statement that a Rydberg electron sees mostly the
Coulomb potential can be replaced by a more general statement that an excited or an outer electron sees mostly a
Coulomb potential plus a polarization potential, to a remarkable accuracy.

We note that the importance of polarization in atomic structure is well known, as reflected both in
perturbation calculations for alkali metals [14, 15], and in model potentials chosen, e.g., both for ‘one-electron’
alkali atoms [16, 17] and for ‘two-electron’ alkaline Earth atoms [5, 18]. The underlying universality was
however difficult to identify, define, or describe, since a perturbative treatment is only applicable to high angular
momentum states, and the effect of core polarization is difficult to distinguish from other short-range effectsin a
numerical calculation.

2. Two-scale QDT

Our two-scale QDT for ‘Coulomb-+polarization’ potential is built upon the analytic solution of the radial
Schrodinger equation

e Rl+D) G C
[—— AL G L e]vfz(r) =0, ©)

2u dr? 2ur r r
where y1is the reduced mass, C; > 0 and C, > 0 measure the strengths of the Coulomb and the polarization
potentials, respectively. The equation has two characteristic length scales 3, :== (2uC,/ %)/ "=2 (n = 1,4),
corresponding to each one of the potential terms of the form of —C,, /7" (n = 1,4). Eachlength scale 3, hasa
corresponding energy scale of s = (/22/21)(1/3,)2. Scaling the radius rby 3,, and the energy e by its
corresponding s, the scaled Schrodmger equation takes the form of

&+

drs r?
where 7, := r/3,and ¢, := ¢ /5", with the ratio of length scales 54 / B serving as a measure of the relative
strength of the Coulomb and the polarization potentials.

Through generalizations of techniques that have led to other single-scale QDT solutions for 1,/7° [19],1/r?
[20],and 1/r* [21-25] potentials, we have solved equation (3) analytically to obtain its QDT base pair of
solutions and the corresponding QDT functions. The base pair f“and g“[26] are defined with energy and partial
wave independent [27] asymptotic behaviors around the origin (specifically r, < 3,/ 51),

ffiz(fs) ~ 1 / (54/51) cos[(Bs/B) /1, — 7/4], @)
gf I(TS) (ﬂzx/ﬁl) Sln[(ﬁ;;/ﬁﬂ/i@ - 71'/4], (5)

for all energies ¢;. They are normalized such that their Wronskian W (f¢, g©) := f°(dg¢/dx)
— (df°/dr)g¢ = 2/m.For ¢; < 0,the QDT base pair has asymptotic behavior at large r, given by

e

+ + (Ba/ B )2 + 6s]vfsz(rs) =0, 3

1
Ts —> 0 [WJCUr (2/4/5’.5)1/(2)3‘,5)67,‘{5?'5 + W)Cc, (2H5r5)71/(2fc5)e+m5r5]’ (6)

Rs




10P Publishing

NewJ. Phys. 18 (2016) 103016 HFuetal

oo 1

1y — ) 10k .
g:sl(rs) S [W§+(2,$5,‘5)1/(2m)e Rty ng(z,isrs) 1/@ks) pthsts] @)

Ths
where k, = (—¢,)!/2. Ttgivesa2 x 2 W¢ matrix with elements W5, describing the evolution of a wave function
through the —C,/r — C,/r* potential at negative energies.

In terms of the W* elements, the bound spectra for any potential V(r) that behaves asymptotically as
—C/r — C,/r* canbe formulated [26] as the solutions of

X]C(fs’ ﬁ4/ﬁl) =K, I, ]) (®

Here x| = WJ?, / st, isa universal function of the scaled energy ¢, and the ratio of length scales 3,/3,. The K“is
ashort-range K matrix defined by matching the short-range wave function, u; (r) for potential V(r), to alinear
combination of the QDT base pair [26, 27]

u(lj(r) - Afl] [fél(rs) - KC(G) l’ ])g;sl(rs)]) (9)

atany radius where V(r) has become well represented by — G /r — C,/r*. Compared to single-scale QDT
formulations [26], the formula for bound spectra in the two-scale formulation, equation (8), is structurally the
same except that the two-scale x; depends parametrically on 3,/ 3;, and the two-scale K “is defined in reference
to —C,/r — C,/r*, instead of —C,/r solutions.

From our analytic solutions, we obtain

. tanf; + tan(m/2)(1 + M)/(1 — M)

X = — = - (10)
1 — tan6; tan(wv/2)(1 + Mp)/(1 — M)

Here vis the characteristic exponent for the —1/r, — (3,/3;)?/r. potential, given in the appendix. Itisa
function of the scaled energy ¢, and depends parametrically on 3,/ 3,, as are the tan 6, and M, functions in
equation (10). The function tan 6 isgivenby tan6; = Y, /X, with X;” = 3% (— l)sz; ,and
Yy =37 (= 1)iby; . Here b,,s are the coefficients of the generalized Neumann expansion [19, 28] of a wave
function. Theyare givenby b, = 1,and
b = AmF(V)F(Z/ +vo+ DI'(w—1v9+ 1) o I'w+m—w) en (),

I'v—w) T'w+mITw+vy+m+ DI'w—1vy+m—+1)

(11)
b = (— 1A T'w+1+w) v Tw—m+DI'w+ vy — m)I'(v — vy — m) (=),

'+ DI'w + vo)T'(v — vp) F'w+1+w —m)

(12)
in which I (x) represents the gamma function, m is a positive integer, v := [ + 1/2, A := (84/B1)/— 6>
wo=—1/2 4+ 1/(2/—¢),and ¢, (V) := H;”:’Ol Q (v + j) with Q (v) given by a continued fraction

1
QW) = % W+3/2%+1/4 ’ (13)
(& v &
! (dl) (,,+1)[(1,+1)2,Vgl(,,+2>[(y+2)z,V5]Q(V +D
The Zf\\/ﬁ function in equation (10) is given byZ\?fl =[T'(v — w*)/F(fz/ — w7) M, where
I'a —v)I'd —v+vy)l'd — v — vy ( CG(—v

M= [(By/ 2l el m o — 2L DA 0 ( « )), (14)

I'A+v)I'A+ v+ v)l'(Q + v — vo) \ Ci(+v)

inwhich G (v) = [132, Qw + j).

3. Application to bound spectra of Cs and Rb

Equation (8) gives the two-scale QDT spectrum as the cross points between a universal function x; (¢, 81/51)
and a short-range K¢ (¢, I, j) function. It can also be formulated in a ¢ representation [25], as
X' (€5 Ba/B1) = pe (e, 1, j), where x}' = [tan™'(x]) — m/4]/7 and u is the ‘new’ quantum defect defined by
uf = [tan~}(K¢) — 7/4]/7.Both X' and € are taken to be within a range of [0, 1) by taking tan~!(x) tobe
within arange of [ /4, 57/4). In applying equation (8) to the spectra of an alkali atom, one has C; = 1and
Cy = Qieore/2 in atomic units, where oo is the polarizability of the core (i.e. the ionic core excluding the outer
electron),and 3,/ = 214*/* /Qcore -

The key difference between the two-scale QDT and the standard single-scale QDT [3, 5] lies in the fact that

the ‘new” quantum defect y¢, being defined in reference to the —C/r — C,/r* potential, is determined by the
Coul

lj
defined in reference to the — C;/r Coulomb potential, and has therefore much weaker energy dependence.

logarithmic derivative of a wave function at much shorter distances than the standard quantum defect

3
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Figure 1. The /i representation of the multiscale QDT bound spectra, as the crossing points between x/' (5, 44//31) (the curves
plotted) and p¢ (the nearly horizontal lines) as functions of energy, illustrated here for 2S;,, (I = 0) series of Cs (Black) and Rb (Blue).
When the spectrum is known, the function /' evaluated at bound state energies gives a discrete representation of the i function.
Here we use the experimental data for Cs [9] and Rb [11, 29] (squares) to show that 4, and therefore K¢, are to a very good
approximation a constant, including those for the ground states (6s for Csand 5s for Rb). The x* as a function of energy is different
for Cs and Rb due to their different length scale ratios 34/, which in turn is due primarily to their different core polarizabilities. ccore
is taken here to be 15.77 a.u. [9] for Cs, and 9.076 a.u. for Rb [15].

Figure 1 illustrates both the ¢ representation [25] of the two-scale QDT spectrum, and the weak energy
dependence of 1 (¢, 1, j), using experimental data for the 25; /, series of both Cs [9]and Rb [11, 29].

From a different perspective, the two-scale QDT provides an analytic description of the energy dependence
of the ugoul in the Rydberg—Ritz formula. Specifically, equation (8) for the bound spectra can be solved, more
precisely re-casted, as the solutions of

1

Enljs = — . (15)
’ 4[n — ,U'?OUI(fnljs)]z
Here ¢, is a scaled bound state energy (hence the subscript s) defined by
Enljs *= (Enlj - Eion)/sj(il) = (Enlj - Eion)/4RM)
tan(#uf"“l) = ——Ltan[r(@ - 1/2)], (16)
! + 1
with
- I'l/Qky) + v+ I/Z)M K¢ cos(mv/2 — 0) + sin(wv/2 — 0)) (17)
T(1/Qky) — v+ 1/2) | K cos(nv/2 + 67) — sin(mv/2 + 607)

Equation (15), which is formally equivalent to equation (1) with a different scaling, shows that the spectra for any
potential that behaves asymptoticallyas —C;/r — C,/r* can be expressed as a Rydberg-Ritz formula with an
energy-dependent ul(j:"“l, consistent with the general conclusion by Hartree many years ago [2]. The energy
dependence is described analytically by equation (16). It is, to the best of our knowledge, the first nonperturbative
analytic description of this energy dependence.

Coul

Figure 2 compares the Coulomb quantum defects " to the two-scale QDT predictions of equation (16)

with a constant K¢, using as examples the 25, /, and 2P, /, series of Rb and Cs. The Rb data are taken from recent
precision measurement and analysis in [8, 11, 29]. The o is taken to be 9.076 a.u. [15]. The dimensionless
parameter K “is determined to be —1.314 for the °S, /, series, and —1.173 for the 2P, /, series, by fitting to an
intermediate-n portion of the spectra. They correspond to ¢ = 0.4571 for the 2S; /, series, and ;¢ = 0.4747 for
the 2P, , series. The Cs spectrum data are from [9], and we have taken its core = 15.77 a.u. [9]. The parameters
K¢are determined to be —0.9135 for the 2S; /, series, and —0.8942 for the 2P, /, series. They correspond to
p = 0.5144 and p¢ = 0.5178 for the 2S, /, and 2P, , series, respectively. It is remarkable that even with such
constant K s (or ys), the two-scale QDT predicts ug"“l with an accuracy better than 0.3% for the ground states,
and the energy with an accuracy better than 1.3% for the ground states, and progressively better for excited
states.

We note that the atomic spectra differ from those of diatomic rovibrational spectra [27] in that the quantum
defect, K or ¢, does depend strongly on the partial wave [, and for heavy atoms such as Rb and Cs, also on j. The

sensitive | dependence, already well known in standard QDT for ,ug"“l, is due to the small electron mass which

4
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Figure 2. Energy variation of the Coulomb quantum defects starting from the ground states. Open symbols: data derived from
experimental spectra [8, 9, 11,29] and equation (15). Solid dots: QDT predictions from equation (16) with constant K s. Connecting
lines: equation (16) which is well defined for all negative energies.

makes the centrifugal energy comparable to other electronic energies. The j dependence is a reflection of the
relativistic effects. Through the j dependence of the quantum defect, which can be determined accurately from
experimental data, our QDT provides an efficient, yet accurate method for incorporating relativistic effects
without solving relativistic equations. It takes full advantage of the fact that relativity is only important close to
the nucleus where the electron can potentially move much faster.

4. Discussions and conclusions

The weak energy dependence of K (or 1), and the degree to which a constant K¢ (or x¢) describes the energy

dependence of ug"“] show that atomic spectra follow the universal behavior as characterized by the

—C/r — C,/r*solution, not only for high partial wave states [14, 15], but also for the Sand P states, and not
only for highly excited states, but also for the first few excited states and the ground state. The weak energy
dependence of K “also implies that the probability for finding this outer electron in the region where the
potential defers substantially from —C,/r — C,/r*is small [32], and the wave function, including its
normalization, is accurately given by the analytic — C,/r — C,/r* wave function. This combination of spectrum
and wave function both following a broader universal behavior is what will lead to the broader universal
behaviors in atomic polarizability and the Cy coefficient for different atoms and different electronic states.

Through the weak energy dependence of its short-range parameters, the two-scale QDT allows the
determination of the Rydberg spectra from the measurement of the first few excited states, and allows the
spectral determination of the core polarizability [27]. Above the ionization threshold, the theory will provide an
analytic description of electron-ion scattering [3, 5, 7] over a wide range of energies. Higher accuracy on the
spectra and other atomic properties, when desired, can be achieved by taking into account the weak energy
dependence K* (or 1) using a standard Taylor expansion (since they are analytic functions of energy, unlike
12 in the presence of the polarization potential). Multichannel [3, 5, 33] and anisotropic generalizations of the
theory will extend its description to atomic species other than group-I atoms. The two-scale QDT can also be
used in a fully ab initio fashion together with a R-matrix theory [5, 7], leading to more efficient and accurate
calculations with a smaller R-matrix box.

In conclusion, we have presented a two-scale QDT for a Coulomb plus polarization potential, and have used
it to establish a broader universality in atomic spectra, covering not only the Rydberg states, but also lower lying
states including the ground state. Mathematically, the same —C;/r — C,/r* solution is applicable not only to
electron-ion, but also to ion-ion interactions. Finally, this first establishment of analytic multiscale QDT gives
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hope that similar theories can be developed for other interactions, such as atom-atom [34] and ion-atom [23—
25, 35], thatare currently treated either at only a single scale [26, 33], or at multiscale but only numerically (see,
e.g., [36-38]). If successful, such developments will have impact on almost every aspect of atomic and molecular
structure, interactions, and reactions.
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Appendix. Characteristic exponent for the Coulomb plus polarization potential

The characteristic exponent, v, as its name implies, plays a central role in the theory of Mathieu class of functions
[39], where the concept was first introduced. It came into the Schrodinger equation first through the solutions
for the 1/r* potential, which are given in terms of the modified Mathieu functions (see, e.g., [21, 25]). In the
more general context of Schrodinger equations, the concept of characteristic exponent is turning out to be a
general feature for equations with two essential singularities, oneatr = 0 and oneat r = oo [26]. It emerged
naturally in other single scale solutions for 1/r¢ [19]and 1/7* [20] potentials, and is appearing again in this first
two-scale solution for the —C;/r — C,/r* potential. Mathematically, the characteristic exponent characterizes,
for the Schrodinger type of equations, the nature of nonanalytic behavior at the two essential singularities, r = 0
and r = oo. Physically, through the factor such as the |¢” in equation (14), it characterizes the nonanalytic
behavior of the QDT functions at the threshold ¢; = 0. For the —1/r° potential, for instance, the deviation of v
from its zero-energy value of 1 is closely related to the breakdown of the effective range expansion [40].

Forthe —C/r — C,/r* potential under investigation here, we have shown that, similar to other 1 /7"
(n > 2) potentials [25, 32], the characteristic exponent v can be determined either as a root of a characteristic
function, or as the root of a Hill determinant [41, 42]. The characteristic function is given by

2
A, €0 Bu/ B) = (v — 1) — @[Q‘(u) — Q- (18)

where Q (v) is defined in terms of the Q () function (equation (13)) by
W+ 1/2)% + 1/4
W+ DIw + 1) — vl

The Hill determinant is related to the characteristic function and is given by

Q) = Q). 19

1

Di'(w, e Bu/B) = % — 12)C) Co(—p) MW €6 Ba/ B, (20)

where C;(v) = [T2, Qv + j). Defining Hi(e,, 54/31) := Dj' (v = 0, €, (4/$), the v, as a function of the
scaled energy ¢, and the length scale ratio (3,/3;, can be found as the solutions of

cosmv) =1 — 2H,. (21)
For 0 < H; < 1, visreal and is given by
v=1I+ Lcos*1(1 — 2H). (22)
27
For H; < Oor H; > 1,v = 14 + iv; is complex, with its imaginary part v; given by
Vi = - cosh 1 (|1 — 2H))), 23)
27

= L - om 4 SO =2 - 11 (24)
2

Its real part is given by

_ lr Hl < 0
vr= {l 1172, Hi> 1 (25)

The real part of vis defined within a range of 1. All v + j, where jis an integer, are equivalent.

6
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Figure Al. The imaginary part of the s wave (I = 0) characteristic exponent, v;, for Cs and Rb atoms over the range of energies
corresponding to that of figure 1. 4 = 0 over the same range. The exponent is different for different atoms due to their different
B4/ 01 AMathematica notebook for implementing the QDT functions presented in this work can be found in the Supplementary
Data.

As an example, for the s wave (I = 0) of Cs and Rb atoms in the range of energies corresponding to that of
figure 1, the real part of their ¢/’s are equal to zero, and their imaginary parts are functions of energy as illustrated
in figure A1. More details of the —C;/r — C4/r* solutions will be presented elsewhere. A Mathematica
notebook for implementing the QDT functions presented in this work can be found in the Supplementary Data.
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