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We experimentally measure and theoretically analyze the three-atom recombination rate, L3, around a
narrow s-wave magnetic Feshbach resonance of °Li-®Li at 543.3 G. By examining both the magnetic field
dependence and, especially, the temperature dependence of L3 over a wide range of temperatures from a few
1K to above 200 uK, we show that three-atom recombination through a narrow resonance follows a universal
behavior determined by the long-range van der Waals potential and can be described by a set of rate equations
in which three-body recombination proceeds via successive pairwise interactions. We expect the underlying
physical picture to be applicable not only to narrow s wave resonances, but also to resonances in nonzero
partial waves, and not only at ultracold temperatures, but also at much higher temperatures.
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Molecule formation through three-body recombination is
one of the most fundamental chemical reactions as it pertains
to the very origin of molecules [1,2] and their relative
concentration to atomic species. It is also the key to
understanding the initial stages of condensation where atoms
form molecules which further recombine with other atoms
or molecules to grow into bigger molecules, clusters, and,
eventually, to mesoscopic and macroscopic objects. As a
reflection of the fundamental difficulties in quantum few-
body systems, progress on three-body recombination has
been excruciatingly slow. Fundamental questions such as the
relative importance of direct (background or nonresonant)
and indirect (successive pairwise or resonant) processes [3,4]
seem as fresh as they were decades ago [5,6]. Unlike deeply
bound few-body bound states, for which large basis expan-
sion works to a degree (see, e.g., [7]), three-body recombi-
nation occurs at much higher energies around the three-body
breakup threshold where the number of open channels for
most atoms other than helium goes to practically infinite,
making standard numerical methods [8] impractical.

Cold-atom experiments have provided the experimental
background for breakthroughs in few-body physics. In such
experiments, two-body interaction can be precisely con-
trolled via a Feshbach resonance (FR) [9], and remarkably,
manifestations of three-body recombination have become
one of the most routinely measured quantities through trap
loss. The vast amount of data thus generated has enabled
considerable progress in few-body physics, first, in eluci-
dating the Efimov universality [10-13] and, more recently,
in discovery and exploration of the van der Waals univer-
sality (see, e.g., Refs. [14-20]). Still, much of the progress
has, so far, been limited to the zero temperature, to broad
s-wave FR’s, and to the Efimov regime where the
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s-wave scattering lengths among the interacting particles
are much greater than the ranges of interactions as
measured by their corresponding van der Waals length
scales. While experiments in other regimes are possible
(see, e.g., Refs. [21,22]), they have not received as much
attention partly due to the scarcity of the corresponding
theories. Further theoretical progress, as well as exciting
experimental developments such as state-to-state measure-
ments [23], promise much further progress in few-body
physics and chemistry.

In this Letter, first, we reassert that universal behaviors for
few-atom and many-atom systems exist much beyond the
zero temperature and beyond the s wave, as first suggested
some years ago [24]. They exist to the 1-K regime similar to
the corresponding quantum-defect theory (QDT) for two-
body interactions [25,26] and can be further extended to
greater temperature regimes through multiscale QDT [27].
Such broader-sense van der Waals universal behaviors can be
mathematically rigorously defined in a way similar to the
definitions of universal equations of states at the van der
Waals length scale [28-30]. They will be investigated as a
part of a QDT for few-atom and many-atom systems. By
expanding the region of universal behavior beyond the zero
temperature and beyond a broad s-wave resonance, one will,
finally, make the connection between studies of idealized
few-body systems and real chemistry [2—6,8]. We take a step
in this direction here by experimentally measuring and
theoretically analyzing the three-atom recombination around
anarrow s-wave magnetic FR of °Li-°Li around 543.3 G. We
show that, at ultracold, but finite, temperatures, three-body
recombination is dominated by the indirect process if there
exists a narrow resonance within k37 above the threshold.
Further, we show that the rate constant describing this
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successive pairwise process follows a universal behavior
determined by the long-range van der Waals potential. An
analytic formula is presented for the rate constant describing
both its dependence on the temperature and its dependence
on the resonance position, which, in our case, is tunable via a
magnetic field.

Experiment—We prepare a gas of °Li atoms in the two
lowest hyperfine states of F' = 1/2, mp = +1/2 [labeled as
a (+1/2) and b (—1/2) states, respectively] in a magneto-
optical trap. The precooled atoms are then transferred into a
crossed-beam optical dipole trap made by a fiber laser with
100 watt output. The bias magnetic field is quickly swept to
330 G to implement evaporative cooling [31,32]. A noisy
radio-frequency pulse is then applied to prepare a 50:50 spin
mixture. At 330 G, the trap potential can be lowered down to
0.1% of the full trap depth (the full trap depth is around
5.6 mK) to obtain a degenerate Fermi gas. After that, the
magnetic field is swept well above the narrow FR at 550 G to
calibrate the temperature and the initial atom number N,
Here, the s-wave scattering length of the a — b state is
close to the background scattering length of approximately
0.96f¢, for which the gas is weakly interacting [here, S :=
(2uCg/h*)"/* is the van der Waals length scale for °Li-®Li
interaction [25]]. The temperature of a weakly interacting
Fermi gas is then measured by fitting the 1D density profile
with a finite temperature Thomas-Fermi distribution [33].
To study the temperature dependence of the three-body
recombination rate, atom clouds are prepared in a temper-
ature range between 4 and 225 uK by controlling the final
trap depth and the evaporative cooling time.

To study the three-body recombination rate around the
narrow FR at 543.3 G, the magnetic field is fast swept from
550 G to a target field B, near the narrow resonance, where
we hold the atom cloud for a time duration 7. With
techniques such as recording the real-time magnets current
to monitor the fluctuation of the magnetic field, a field
resolution of better than 0.09 G is achieved for all of our
data sets. (See the Supplemental Material [34].) After the
holding period, the number of atoms left in the trap, N(z),
and the Gaussian widths of the cloud, O(y.z)> A€ extracted
from the 2D column density of the absorption images. To
avoid the high column density induced error of the atom
number, we turn off the optical trap after the holding period
and take the absorption images of time-of-flight clouds.

Our atomic vapor is a two-component thermal gas with
N, atoms in state a and N, atoms in state b. If the densities
for atoms in states a and b start out the same, they will
remain the same, namely n, = n;, =:n, and decay with the
same rate, by

E = —L3n3, (1)

where L is the three-body recombination rate. The total
atom number N, = N, =:N is determined by integrating

the density of the whole cloud, where we assume the profile
is a Gaussian of the form n(x,y, z) = nyexp[—x?/(202) —

¥?/(263) — 2%/ (20?%)] with n, being the atom density at the
center of the cloud. The integration gives us
dN(t) L,
= N3 (1), 2
dt (2\/’717)3020202 0 @)

implying that 1/N? has a linear dependence on the holding
time ¢ with

2uy 1
(2V/37)}0%0%02 N2(0)°

Nz(t) (3)

By fitting experimental 1/N? to Eq. (3), we extract Ls.
(See the Supplemental Material [34].)

We measure L; as a function of the magnetic field at
various temperatures from 4.2 to 225 uK. They range from
at least one Fermi temperature 7'y to well above Ty and are
all in the thermal gas regime. (See the Supplemental
Material [34].) The results are shown in Fig. 1, and will
be compared with theory.

Theory—Our theory describes three-body recombina-
tion in a thermal gas and via a narrow resonance as an
indirect, successive pairwise process. A narrow resonance
can be treated as a bound molecular state weakly coupled to
a continuum. The time evolution of atomic number
densities, n, and n, for atoms in states a and b, respec-
tively, and the number density n,;, of metastable molecules
in the resonance state (ab),, are described by a set of rate

equations
dn
d[a = +(Fr/h)nab - Kabnanb
- K%D”anab + KﬁD”anab + KﬁD”bnaba <4a)
dl’lb
W = +(Fr/h)nab - Kabnanb
— Kipnpnay + Kipnpnay + Kfipnana, — (4b)
dl’la/,
7 = _(Fr/h>nab + Kabnanb

= Kapnang, — Kapnpng,. (4c)

Here, T, is the width of the resonance. K, is the rate
for the formation of metastable molecules via two-body
collision at temperature 7. It is related to the resonance
width I, by

Koy = (T,/h)(V27)* (2, + 1)eme/bT, (5)

for a resonance in partial wave [, located at energy e,. Here,
Ar = (2ah*/mkgT)'/? is the thermal wave length of an
atom at temperature 7. The K%, in Eq. (4) is the rate of
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FIG. 1. Ls(T,B) as a function of the magnetic field B at
temperatures 4.2 uK (a), 41 uK (b), 75 uK (c), 146 uK (d),
225 pK (e). The red lines are the fits to theory to be discussed
later. The magnetic FR crosses the threshold at By = 543.25 G.
The trap losses for B < B are due to higher-order processes that
are not considered in this Letter.

atom-dimer interaction leading to the formation of a stable
molecule, namely for the processes of a + (ab), — a +
(ab)y and a + (ab), — b+ (aa),, or b+ (ab), = b+
(ab)y and b+ (ab), — a+ (bb),. K5, is the rate of

breakup of a metastable molecule via a + (ab), — 2a + b
or b+ (ab), - a+2b. Kup =K, + K5, is the total
inelastic and reactive rate for atom-dimer interaction. This
rate equation ignores the contribution from the direct
three-body process to focus on the contribution from the
indirect process, which will be shown later to dominate at
cold temperatures.

The seemingly complex rate equation, Eq. (4), simplifies
if the I', and the time of measurement have allowed n,, to
reach a steady state, characterized by dn,,/dt = 0. In the
steady state, one obtains

o wmm
“ (Fr/h) +KAD(na+nb)

2320321, 4 1)e~/ksT . (6)

Under the further initial condition of n,(r=0)=
n,(t = 0), corresponding to our experiment, and the con-
dition of ',/ > K 4p(n, + n), we obtain, in steady state,
n,(t) = n, (1) =n(r) and satisfy Eq. (1) with L; given by

Ly(T,e,) = 3KM (T, €,)(V247) (2L, 4 1)e=o/kT . (7)

All the required conditions are well satisfied in our experi-
ment. We caution, however, that the typical three-body
rate equation, Eq. (1), should not be taken for granted for
indirect processes. They can have other behaviors under
different conditions.

Through Eq. (7), the rate equation, Eq. (4), reduces the
understanding of L; to the understanding of K%, which is
the rate for the formation of bound molecules in atom
interaction with a metastable dimer. This bimolecular
process differs from the typical atom-(truly bound) dimer
interaction in that its inelastic component does not always
lead to the formation of bound molecules even in the limit
of zero atom-dimer energy. It can also lead to the breakup
of the metastable dimer, resulting in three free atoms. Our
theory for K&, is based on the multichannel quantum
defect theory for reactions and inelastic processes as
outlined in Ref. [35]. Following an analysis similar to
what led to the quantum Langevin (QL) model for reactions
[35,36], we obtain

2 ©
KM (T, e,) = s?}Dﬁ ; dxx'/2e=*
< 3" My (e, + kgT)WE(Tex).  (8)

1=0

Here, s4P is the rate scale for atom-dimer interaction with
a van der Waals —C4P/R® long range potential. More
specifically, s3? = nhpaPl /u*P, where P is the atom-
dimer reduced mass and f4aP := (2uAPC4P /h?)1/* is the
length scale associated with the atom-dimer van der Waals
potential. M, (€, = €, + €ap) = 2 ren|(S5) s> is a
short-range branching ratio for transitions into bound
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molecular states characterized by set {M}, with S¢; being
the effective short-range S matrix characterizing atom-
dimer, namely three-body interaction within the range of

the van der Waals length scale [25,35]. Wl(l?l)(es) is the
universal partial inelastic and reactive QL rate for partial
wave [ [35]. T, :=T/s4P is a scaled temperature, with
s4P being the temperature scale given by s4° := s4P /kp
where 540 := (72 /2u*P)(1/4P)* is the energy scale
associated with BAP.

Equations (7) and (8) provide a foundation for under-
standing the universal behaviors of three-body recombina-
tion via a narrow resonance over a wide range of energies
and temperatures. We focus, here, on an s-wave resonance
(I, =0) and on the ultracold temperature regime of
T < s4P (namely T, < 1), to derive an analytic formula
for L; that is most useful in current experiments. Using
the unitarity of an S matrix, we can write M, () =
1 =3 repl(S5s) >, namely in terms of the short-range
branching ratio into the three-body breakup channels {B}.
Taking advantage of the short-range S matrix being
insensitive to energy and angular momenta [25,37], the
short-range branching ratio to bound molecular states is
approximately a constant M, _o;—o(e;) & /M with ./ being
a dimensionless three-body parameter related to SS; and
constrained by 0 < . < 1. Substituting this result into
Eq. (8), we obtain for an s-wave resonance (/, = 0) in the
ultracold region of T < s4P

6
KM (T,e,) % M K3O(T), 9)

with K/?113<6>(TS) being the universal QL rate that is well
approximated in the ultracold s-wave region by [35]

_(6)
4
RSO~ sppaally(1-"22072). 0

where Ezg?):() =2z/[[(1/4)]* ~ 0.477988 8 is a universal

number that represents the scaled mean s-wave scattering

length for a —1/R®-type van der Waals potential [38].
Substituting Eq. (9) into Eq. (7), we obtain

Ly(T.e,) m 3MKS O (T,)(V2ir)Per/BT. (1)

In the presence of a narrow s-wave resonance within an
ultracold energy range of the order of kzT above the
threshold, Eq. (11) gives an analytic description of the
three-body recombination rate L3 as a function of both
the temperature and the resonance position, in terms of a
single dimensionless three-body parameter 0 < . < 1.
The resonance can, in principle, be of any origin, but a
magnetic FR offers a unique opportunity to tune the
resonance position and, thus, to test the predicted depend-
ence on ¢,.

TABLE 1. The measured results and error bars of K4, (T)

T wK) 6T wK) K4, (10719 cm®/s) SKY, (10712 cm?®/s)
4.2 0.2 1.04 8
41 4 0.878 7
75 4 0.803 6
146 7 0.794 6
225 11 0.720 5

Comparison between theory and experiment—For
SLi, using Cg = 1393.39 a.u. [39] for the atom-atom
potential, we have C4” ~ 2C¢ = 2786.78 a.u., from which
we have p4P =79.8935 a.u., s4P =3383.85 uK, and
s4P =2.1035x10"'%cm?/s. For our particular Feshbach
resonance, the resonance position is given by ¢, =
u.(B — By) with u, = 1.98up being the differential magne-
tic moment for the resonance [9]. Equation (7) now gives us

Ly(T, B) = 3KM (T)(v/247)3 exp [— ’%} . (12)

Figure 1 shows the fits of this equation to experimental
loss spectra, giving experimental results of K%, (T) at
five different temperatures, tabulated in Table I and plotted
in Fig. 2. Our result for K%, at the lower end of the
temperatures, 4.2 uK, is consistent with the earlier result of
Hazlett et al. [21]. Figure 2 further shows that the temper-
ature dependence of the rate K%, (7) is well described by
analytic formulas, Egs. (9) and (10), a fit to which gives us
the three-body parameter # = 0.25 +0.01, consistent
with 0 < A < 1.

Discussions and conclusions.—We have measured
and analyzed three-body recombination around a narrow
s-wave resonance and in a thermal gas regime. The
resonance is much narrower than kzT and is located in a
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FIG.2. The rate constant K4, (T) near the °Li narrow s-wave FR
resonance at 543.25 G. The red solid line is a fit of our theoretical
model, Egs. (9) and (10), to our experimental measurements from
which the three-body parameter .# = 0.25 £ 0.01 is extracted.
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neighborhood of kzT above the threshold. We have shown
that the recombination follows a universal behavior deter-
mined by the van der Waals potential with a single three-
body parameter .#Z. When applied to a magnetic FR, the
theory gives the line shape of the Feshbach spectrum,
namely L3 vs B, described by Eq. (12). It shows that the
line shape is temperature-dependent and has a width of the
order of kzT /ug (see, also, Ref. [21]). Other than the details
of ./, the results are equally applicable to identical bosons
and easily generalized to other cases.

The theory further shows that, in the presence of a
narrow s-wave resonance within kz7T above the threshold,
the indirect process has a rate of the order (72/m)pB¢A3,
which, at ultracold temperatures of 7' < s, is much greater
than those for the direct processes. For bosons, it is greater
by a factor of (17/f)? since the direct process has a rate of
the order (71/m)p¢ [40,41]. The enhancement factor is even
greater, by another (s;/T), for our two-component fermion
case for which the direct process has a rate of the order
(h/m)Be(T/sr) [40,41]. Thus, at ultracold temperatures,
the indirect process dominates the three-body recombina-
tion if there is a narrow s-wave resonance within k37 above
the threshold.

Many of the concepts of this work are applicable
to resonances in nonzero partial waves (see, e.g.,
Refs. [42-45]), the understanding of which will further
expand the temperature regime of three-body physics
towards practical chemistry [2-6,8]. More measurements
of  for other narrow resonances and other systems will
further stimulate a deeper understanding of this three-body
parameter. It can be expected to be related in a universal
manner to short-range K¢ matrix parameters K¢ and K¢
for atom-atom interaction in (electronic) spin singlet and
triplet, respectively [26]. Such a relationship, when
revealed and understood, would signal the arrival of a
QDT for few-atom systems, and will represent a big step
forward in few-body physics and in chemistry.
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TIME-DEPENDENT ATOM LOSS

The 3-body loss rate L3 is obtained by fitting the time-dependent atom number with Eq. (3) in the main text. The
time-dependent atom number is expressed in the form of 1/N2(t) so that the fitting formula is a linear function, the
slope of which gives L3. A typical time-dependent atom number data is shown in Fig. 1.
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FIG. 1: The time-dependent 1/N? where N is the atom number left in the optical trap. The data is taken for a 70 uK cloud
at the magnetic field 543.9 G. The fitting gives Lz = 2.455 x 1072° c¢m®/s.

TEMPERATURE OF THE ATOM CLOUD

To measure the rate constant K45, (T) around the SLi narrow s-wave Feshbach resonance at 543.3 G, it is highly
desired that the range of the temperature measured is as large as possible. However, there are constrains in both the
high temperature limit and the low temperature limit. It is noted that we want to be in the thermal gas regime for this
work. So we intentionally avoid temperatures well below the Fermi temperature. Also, the resonance profile becomes
very narrow, close to 0.1 G [1], when the temperature is less than the Fermi temperature, while in our current setup
the magnetic field resolution is only about 0.09 G (the equivalent standard derivation is about 0.05 G). So we choose
several uK as the low end of the temperature. For the high temperature data, we reduce the evaporative cooling time
and use the deep trap to hold the hot atom cloud. However, the deeper trap requires higher power of the trapping
beam which results in additional heating and loss and limits the availability of the high temperature data. We choose
the highest temperature of about 200 uK, where the trap has at least 15 second lifetime for a noninteracting Fermi
gas at 528 G.

The trapping parameters of our data set at different temperatures are listed in Table I, where w, , . are frequencies
of the trap used to hold the cloud, N4 is the average single spin atom number corresponding to the temperature,
and Tr is the Fermi temperature. The data indicate that we are in the thermal gas regime, where the Fermi statistics
does not play a significant role.

STABILIZATION AND MEASUREMENT OF THE MAGNETIC FIELD

The resonance width AB of the SLi narrow Feshbach resonance near 543.3 G is about 0.1 G [1]. Experimental studies
around this resonance usually requires very high magnetic field resolution well below 0.1 G. Our experimental data are



T Wx Wy Wz N Tr
(uK)|((2rHz)| (27Hz) | (27Hz) |~ 7 | (1K)
4.2 | 169.0 | 1590.5 | 1752.5 {221900| 4.1 | 1.0
41 534.2 | 5028.9 | 5541.0 |297825| 14.3 | 2.9
75 | 755.5 | 7112.0 | 7836.1 [358042|21.6 | 3.5
146 | 1068.4 |10057.8|11082.0/458207| 33.1 | 4.4
225 | 1510.9 |14223.9|15672.21449510| 46.5 | 4.8

T/T

TABLE I: The trapping parameters of the atom clouds at different temperatures.

in the temperature range of several uK to hundreds of K. These temperatures are well above the Fermi temperature
and significantly broaden the resonance profile, which relaxes the constraint of the magnetic field resolution in our
experiment. For example, at T = 41 pK, kgT/u,. = 0.3 G, and we need only to have a field resolution smaller than
or comparable to 0.3 G.

We adopt several methods to stabilize and precisely determine the magnetic field so that the resolution is less
than 0.09 G for all data points. First, we use a passive method to control the magnetic field. The magnetic field is
generated by a pair of water-cooled magnetic coils. The efficient water cooling allows the temperature fluctuation of
the magnetic coils to be less than 1 °C. The magnetic field is controlled by the current of the coils, which is commanded
by an external control voltage. The resolution of the control is 15 ppm (parts per million), which is equivalent to
0.075 G. By continuously commanding the current of the coils, the magnetic field is locked to a certain value, which
provide a passive stabilization.

Second, we employ a high accuracy measuring system to record the real-time magnetic field for all data points.
The system includes a Keithley ultralow noise autoranging digital multimeter (DMM) and a computer to record the
real-time current fluctuation for the whole sequence of every measurement. It should be emphasized that by recording
the magnetic field for every measurement, we could repeat the same measurement many times and keep the data that
have relatively small magnetic fluctuation for analysis. This helps us to reduce the systematic error induced by the
magnetic field fluctuation. A typical measuring curve of the magnetic field fluctuation is presented in Fig. 2.
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FIG. 2: The magnetic field fluctuation recorded during the holding time of measuring atom loss. The trap is held for 1000 ms,
then the residual atom number in the trap is measured. The magnetic field fluctuation during the holding time is recorded
while the magnetic field is calculated from the measured current. The standard derivation of the magnetic field is about 0.05
G during the holding time. The sampling rate of the DMM is 200 Hz. The noise level of the DMM is about 10 times smaller
than the fluctuation of the magnetic field.

For all the data we present, the standard derivation of the magnetic field is less than 0.05 G, which is represented
by the error bar of the magnetic field shown in Fig. 2 of the main text.
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