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Abstract
We discuss the relationship between scattering length and binding energy for a
diatomic system with long-range van der Waals interaction. The well-known
relation, ε0 = −(h̄2/2µ)(1/a0)

2, is generalized to much higher orders for the
s wave. Analytic results for the binding energies of p and higher angular
momentum states are also presented.

A least-bound state of a diatomic molecule, such as the least-bound s state or the least-bound
p state (for spin-aligned fermions), plays a fundamental role in cold-atom physics. It is the
dominant final state for the three-body recombination process (see, e.g. [1, 2]) that determines
the lifetime of a condensate. It is also the state in which large samples of long-range molecules
[3, 4] may be formed by taking advantage of a Feshbach resonance [5–16]. The understanding
of the properties of this state, such as its energy, and how they relate to the scattering length,
is both useful experimentally and a necessary ingredient of any theoretical formulation.

While the binding energy may be easily computed numerically, such results are difficult to
use by experimentalists, and of little use in theoretical formulations for three- and many-atom
systems. Analytically, little is known about the binding energy of a diatomic molecule except
for the effective-range result of ε0 = −(h̄2/2µ)(1/a0)

2, which relates the s wave binding
energy to the s wave scattering length [17, 18]. This relation is, however, not applicable to any
other partial waves, because for atoms with long-range van der Waals interaction, the effective
range is not defined for the p wave and the scattering length has no definition for d and higher
partial waves [19, 20]. Even for the s wave, it is applicable only for very large scattering
lengths.

The angular-momentum-insensitive quantum defect theory (AQDT) [21–23] provides
a systematic understanding of highly-excited molecular rovibrational states and cold-atom
collisions. Here we apply it specifically to the binding energy of the least-bound state of an
arbitrary angular momentum l and derive simple analytic results that are easily accessible.
In particular, a new analytic representation of the s wave binding energy is presented that is
applicable over a much wider range of s wave scattering lengths than the effective-range result.
Similar representations of binding energies are also developed for p and higher partial waves
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where no previous analytic results exist. (This is not surprising as no such results would have
been possible without the analytic solution for the van der Waals potential [24].)

In AQDT, the bound spectra of a diatomic molecule with −Cn/rn long-range interaction
are given rigorously by the solutions of [20, 21]

χ
c(n)
l (εs) = Kc(ε, l). (1)

Here the χ
c(n)
l function is a universal function that depends only on the exponent of the long-

range interaction n and on the angular momentum l. The strength of the long-range interaction
determines the energy scaling through the length scale βn = (2µCn/h̄

2)1/(n−2),

εs = ε

(h̄2/2µ)
(
1/β2

n

) . (2)

For n = 6 that we are concerned with here [21],

χ
c(6)
l = tan θl + tan(πν/2)(1 + Ml)/(1 − Ml)

1 − tan θl tan(πν/2)(1 + Ml)/(1 − Ml)
, (3)

in which tan θl = Yl/Xl , Ml = Gεsl(−ν)/Gεs l(ν), with ν,Xl, Yl and Gεsl , all of which are
functions of the scaled energy εs , being given in [24].

Equation (1) is exact and applicable to all quantum systems with V (r) → −Cn/rn at large
distances. All the short-range physics is encapsulated in the short-range K matrix Kc(ε, l)

[21, 23], or sometimes more conveniently, in the quantum defect µc(ε, l) [23], which is defined
to have a range of 0 � µc < 1 and be related, for n = 6, to Kc by

Kc(ε, l) = tan[πµc(ε, l) + π/8]. (4)

Like Kc(ε, l), the quantum defect µc(ε, l) depends only weakly on both the energy and the
angular momentum l [23]. Its value at ε = 0 and l = 0 is related rigorously to the s wave
scattering length by (n = 6) [23]

tan πµc(0, 0) = ā0s/(a0s − ā0s). (5)

Here a0s = a0/β6 is the scaled s wave scattering length, and

ā0s = 2π

[�(1/4)]2
= 0.477 9888, (6)

is the mean s wave scattering length of Gribakin and Flambaum [25], scaled by β6.
As discussed in [23], the most convenient expansion parameter for describing a state of

angular momentum l close to the threshold is xl(ε), defined for n = 6 by

xl(ε) ≡ tan[πµc(ε, l) − lπ/4]. (7)

With this definition, xl(0) = 0 corresponds to having a bound or quasi-bound state of angular
momentum l right at the threshold, while a small and positive xl(0) corresponds to having a
bound state of l close to the threshold [22, 23].

For small energies around the threshold, the quantities in equation (3) can be represented
by their respective expansions that derive straightforwardly from the results of [24]

ν = ν0 − 3

25ν2
(
ν2

2 − 1
)(

ν2
2 − 4

)ε2
s + O

(
ε4
s

)
, (8)

tan θl = − 1

22
(
ν2

2 − 1
)εs + O

(
ε3
s

)
, (9)

Ml = (−1)l
π2

24ν2−1 sin(πν0)

1

[�(ν0)�(ν2 + 1)]2
|εs |ν2 + O(|εs |ν2+2 ln |εs |), (10)
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where ν0 = l/2 + 1/4 and ν2 = 2ν0 = l + 1/2. Similar expansions were also used in deriving
the generalized effective-range expansion of [20].

With χ
c(6)
l given by equations (3) and (8)–(10), equation (1) can be solved analytically in

terms of xl . For the s wave, we obtain

ε0s = − 1

ā2
0s

x2
0

[
1 + g1x0 + g2x

2
0

]
+ O

(
x5

0

)
, (11)

where ε0s is the energy of an s wave bound state scaled according to equation (2), x0(ε) =
tan[πµc(ε, 0)], and

g1 = 2

(
1

3ā2
0s

− 1

)
= 0.917 9195, (12)

g2 = (5/4)g2
1 − 2 = −0.946 7798. (13)

We call equation (11) the generic expansion for the s wave. It is an exact expansion to the
order of x4

0 with no other assumptions or approximations. It is applicable even when µc(ε, 0),
and therefore x0(ε), has substantial energy dependence over the range of [ε0, 0]. In practice,
however, since we are looking only at a small range of energies covering the least-bound state,
the energy dependence of µc(ε, 0), and therefore x0(ε), is completely negligible [21]. And this
is true even when the short length scales become comparable to β6 and the resulting potential
supports only a few bound states [26]. Ignoring the energy dependence of µc, equation (11)
gives the s wave binding energy in terms of the small parameter µc(0, 0), reflecting the fact
that for l = 4j (j being a non-negative integer), a small and positive µc(0, l) corresponds to
having a bound state of l close to the threshold [22, 23].

Since x0(0) = tan πµc(0, 0) is related rigorously to the scattering length by equation (5),
equation (11), with energy dependence of µc ignored, is exactly equivalent to the following
expansion in 1/(a0s − ā0s), consistent with the fact that a large, and positive, s wave scattering
length corresponds to having a s wave bound state close to the threshold.

ε0s = − 1

(a0s − ā0s)2

[
1 +

c1

(a0s − ā0s)
+

c2

(a0s − ā0s)2

]
, (14)

where

c1 = ā0sg1 = 0.438 7552, (15)

c2 = ā2
0sg2 = −0.216 3139. (16)

Figure 1 compares this result, and the conventional effective-range result of ε0s = −1
/
a2

0s ,
with the basically exact result given by AQDT. It is clear that equation (14) provides a much
better approximation over a much wider range of scattering lengths. Note that it is very
important to leave equation (14) as an expansion in 1/(a0s − ā0s), instead of rewriting it in
1/a0s . Equation (14) is applicable over a wide range of scattering lengths where a0s is not
necessarily much greater than ā0s . In fact, figure 1 shows it to be an excellent approximation
for all a0s > 2ā0s , namely for all Class 0 systems according to the classification of [23].
Rewriting it as an expansion to the fourth order in 1/a0s would destroy its accuracy and range
of applicability. In other words, equation (14) is equivalent to much higher orders in 1/a0s

than 1
/
a4

0s ; it is an entirely different expansion.
For the p wave, the solution of equation (1) with expansions, equations (8)–(10), gives

ε1s = −5x1
[
1 + h1x

1/2
1 + h2x1

]
+ O

(
x

5/2
1

)
, (17)
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Figure 1. The s wave binding energy as a function of 1/a0s = β6/a0. Solid line: exact AQDT
result. Dashed line: effective-range theory. Dash-dot line: result of the analytic representation,
equation (14).

where ε1s is the energy of a p wave bound state scaled according to equation (2),
x1 = tan π [µc(ε, 1) − 1/4], and

h1 = 53/2[�(1/4)]2

36π
= 1.299 466, (18)

h2 = 3h2
1

/
2 − 5π/14 = 1.410 919. (19)

Ignoring the energy dependence of µc, equation (17) gives the binding energy in terms of the
small parameter µc(0, 1) − 1/4, reflecting the fact that for l = 4j + 1 (j being a non-negative
integer), a small and positive µc(0, l) − 1/4 corresponds to having a bound state of l close to
the threshold [22, 23].

For the p wave, the scattering length is also defined and is related to x1 rigorously by
equation (10) of [20] (in which K0

l=1 is simply related to x1 by K0
l=1 = −x1 [23])

x1(0) =
{

36π

[�(1/4)]2
a1s + 1

}−1

, (20)

where a1s = a1
/
β3

6 is the scaled p wave scattering length. Defining

ā1s = [�(1/4)]2

36π
= 0.116 2277, (21)

equation (17), with the energy dependence of µc ignored, is exactly equivalent to

ε1s = −5ā1s

(
1

a1s + ā1s

) [
1 + d1

(
1

a1s + ā1s

)1/2

+ d2

(
1

a1s + ā1s

)]
, (22)

where

d1 = h1ā
1/2
1s = 0.443 0163, (23)

d2 = h2ā1s = 0.163 9879. (24)
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Figure 2. The p wave binding energy as a function of 1/a1s = β3
6 /a1. Solid line: exact AQDT

result. Dash-dot line: result of the analytic representation, equation (22).

Note that unlike the case of the s wave where the binding energy depends on 1/a0s quadratically
in the limit of large scattering length, the p wave binding energy depends on 1/a1s linearly in
the limit of a1s → ∞. Figure 2 shows that equation (22) provides an excellent approximation
to the exact AQDT result over a wide range of energies and p wave scattering lengths. In fact,
it is good approximation for almost all positive p wave scattering lengths except for a small
region around a1s = 0. (It covers virtually the entire region of Class 1, in the classification of
[23].) Again, it is very important to leave equation (22) as an expansion in 1/(a1s + ā1s) to
maintain its range of applicability. Putting it another way, if one had started out looking for an
expansion in a different variable, such as 1/a1s , it is very unlikely that one would ever achieve
an expansion that can cover the entire region of a1s > 0.

If the p wave scattering length is not known explicitly, it can be derived from the s wave
scattering length by taking advantage of the approximate l-independence of µc. This was left
as an exercise in [23], and the answer is

a1s = [�(1/4)]2

18π

a0s − ā0s

2ā0s − a0s

. (25)

Using this result in equation (22) leads to an expansion of the p wave binding energy in terms
of the s wave scattering length: an expansion in 2ā0s − a0s , to be precise. The physical
meaning is clear. An s wave scattering length that is less than, but close to 2ā0s corresponds
to having bound states of l = 4j + 1 close to the threshold [22, 23]. The same expansion in
2ā0s − a0s can also be obtained by using in equation (17) the following more general result:

xl(0) = (2ā0s − a0s)/a0s , l = 4j + 1, (26)

which follows immediately from equations (5) and (7) assuming l-independence of µc. We do
not write this expansion explicitly here to encourage the use of equation (17), or equivalently,
equation (22), when possible, as they do not rely on the l-independence of µc.

For l � 2, the following generic expansion is obtained:

εls = −(2l + 3)(2l − 1)xl

[
1 +

3π(2l + 3)(2l − 1)

2(2l + 5)(2l + 1)(2l − 3)
xl

]
, (27)
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Figure 3. The g wave binding energy as a function of µc(0, 4). Solid line: exact AQDT result.
Dash-dot line: the expansion to the order x2

4 , as given by equation (27).

where εls is the energy of a bound state of angular momentum l scaled according to
equation (2), and xl = tan[πµc(0, l) − πlb] ignoring the energy dependence of µc. This
expansion works well over an ever greater range of scaled energies for larger l, because
the expansions given by equations (8)–(10) are not only expansions in small εs , they are
simultaneously expansions in large l [27]. Figure 3 shows the example of the g (l = 4) wave.
The l � 2 partial waves have no well-defined scattering lengths and therefore no equivalents
of equations (14) and (22).

If the value for µc(0, l) is unknown (it can in fact be easily computed exactly if needed
[23]), it can again be derived from the s wave scattering length by utilizing the approximate
l-independence of µc [21, 23]. In addition to equations (26), we have also from equations (5)
and (7)

xl(0) = ā0s/(a0s − ā0s), l = 4j, (28)

xl(0) = (ā0s − a0s)/ā0s , l = 4j + 2, (29)

xl(0) = −a0s/(2ā0s − a0s), l = 4j + 3. (30)

Together they relate xl(0) to the s wave scattering length for all l. Using these results in
equation (27) leads to corresponding expansions of εls in terms of the s wave scattering length.
For example, using equation (30) in equation (27) would lead to an expansion in a0s for f and
l = 4j + 3 partial waves, reflecting the physics that a small and negative a0s corresponds to
having a bound state of l = 4j + 3 close to the threshold [22, 23].

In conclusion, analytic representations for the binding energy of a least-bound state of any
l have been derived at a number of different levels. For the generic expansions, the only error
is the expansion error. Since we are looking only at the least-bound state, the energy variation
of µc is negligible. The corresponding expansions, including the expansions in scattering
lengths for both s and p partial waves and the generic expansions with the µc(ε, l) ≈ µc(0, l)

approximation, have essentially the same accuracy. Other expansions that make use of both
the energy- and the l-independence of µc are examples of universal properties at length scale
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β6 [21, 23, 26, 28] described by a single parameter, be it µc(0, 0) or a0s . They are very useful
for qualitative understanding, and should also work well quantitatively for the first few partial
waves. Conceptually and mathematically, the l-independence approximation does put a little
stronger requirement on β6 being longer than other length scales in the system, but it is a
requirement that is well satisfied by virtually all real molecules [21, 23].

Finally, the derivation of the results offers an interesting example of functional
representation in mathematical physics. Specifically, it shows that with a proper change
of variable, a function that covers a wide range of one variable may be simply represented by
a perturbative expansion in another. Physics, in this case AQDT [21–23], helps us to pick the
right variable, in this case xl , in which to do the perturbative expansion.
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