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Application of the time-dependent Green’s function and Fourier
transforms to the solution of the bioheat equation¥
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A theory for solving the bioheat equation is developed using a time-dependent Green’s
function and Fourier transform techniques. The description of both steady-state and
time-dependent data are placed into a single framework which can also describe the
effects of inhomogeneous blood perfusion. The theory is illustrated by examples
including the modelling of a thermal conduction hyperthermia system and a new RF
interstitial sytem. A possibility for measuring the blood perfusion parameter and thermal
conductivity from the steady state temperature distribution of a point source is also
proposed.
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1. Introduction

The bioheat equation (Pennes 1948) is the basis for our understanding of the kinetics
of the tumour and tissue heating in hyperthermia treatments. The solution of this equation
is important both for treatment planning and for the design of new clinical heating systems.
Traditionally we have relied almost exclusively on finite-difference or finite-element
methods for such solutions. This may be necessary when tissue parameters such as the
thermal conductivity have large variations or discontinuities in the region of interest.
However, for localized heating methods such as interstitial hyperthermia, spacial variations
of the tissue parameters are usually small in the heated region, which provides an
opportunity for a more analytic approach. The alternative we present here is a method based
on the time-dependent Green’s function and Fourier transform techniques. It is appealing
theoretically because all desired information about the temperature distribution: its steady
state and its time dependence after power-on or power-off, are contained in a single formula
[(8) or (9)]. It is also the ideal method for deriving analytic results and for developing
qualitative understandings.

The application of the time-dependent Green’s function to the modelling of the bioheat
equation is not new. An example can be found in the analysis of thermal washout data by
Newman et al. (1990). However, without using the Fourier transforms, the Green’s function
formalism is difficult to implement numerically, and therefore not very useful for many
practical situations. Our theoretical development is much more complete, including the
formulation of a perturbation theory which deals with the spacial and temporal dependencies
of blood perfusion.

2. General theory

Assuming a constant thermal conductivity, the bioheat equation is given by (Pennes
1948): ST
per = kV2T' = py(x, (T — Tp) + Q(x, 1). ey
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Here T’ is the tissue temperature, p and ¢, are the density and the specific heat at constant
pressure respectively, both of which will be taken as constants (since we have already
assumed the thermal conductivity k to be a constant anyway). T} is the blood temperature
which is again taken to be a constant. u,(x, #) > 0 is the blood perfusion parameter which
can depend on both space and time. Q(X, ¢) is the power density that we are depositing in
the medium. From (1), it is obvious that the blood perfusion term — u,(x, )(T' — T;) plays
the role of a heat sink for 7 > T, and the role of a heat source for T' <T,. Defining
T=T - T, equation (1) can be rewritten as

oT -
v V2T + pi(x, )T = Q(X, 1). (¢))

Remember that (2) is a consequence of (1) upon choosing the blood temperature as the
reference temperature, which may not always be the best choice, as is demonstrated in §
8. When a different reference point is chosen, the resulting equation is different from (2)
¢ 8).

Under the assumption of an infinite medium, the boundary condition for (2) is
T(x, 1)*3>0, 3

i.e. the temperature approaches the blood temperature far away from the volume of power
deposition (other types of boundary conditions will be discussed in § 8). We will also
assume, for now, u,(X, t) = o to be a constant and leave the discussion of space- and
time-dependent blood perfusion to § 9. With these assumptions the solution of (2) is given
by

T(x, 1) = f d*x'G(x, t; x', 0)To(x') + (1/pcp) j dr f dxGx, X, )0, ), 4)
0

-where Ty(x') is the initial temperature distribution and G(X, t; X', ¢') is the time-dependent
Green’s function defined as the solution of

]
[a_t —aV2+ (uo /pc,,)]G(x, X, ) =0(x—x")0@—1t') o)
with the boundary condition

G(x, t;x', ' )* XI5 =0, (6)

and a =k/pcp. This Green’s function is not difficult to find and is given by

- x=x'Y  po

G, t;x',t')=H(@—t)[4na(t—1t')] [————t—t' , 7
(x,1;x',¢')=H(t— ' )[4na(t — )] " "“exp 4G —1) pc,,( ) )

where H(t — t') is the Heaviside step function defined by H(t —¢') =0 for t — ' <0; and
H@—1')=1 for t —¢' > 0. Substituting (7) into (4), we obtain

Tx, t)=

(x— X')z]

—(po/pcplt d3 "To(x’ [_
e x'To(x" Yexp ™

(Arar)*?

1 f :
+ dt' e~ Wolpep)t—1)
pc,,(4not)3/2 . (t —¢ )3/2

37 1o _ (x_xI)Z]
fd X0t )exp[ e ®
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Given the initial temperature distribution and power deposition, this equation yields the
temperature distribution at any time ¢ > 0. In this sense it is the only equation needed for
an infinite homogenous medium. From the computational point of view, however, (8) may
be difficult to use, especially if the power deposition Q is not analytically known. To this
end we take the Fourier transform of (8) and arrive at (Appendix)
t
TG, 1) = exp[ - (ﬂ)— + szoc)t]To(s) + LJ' dt’exp[ - (ﬁo_ + s2a>(t - t')]Q(S, t),
: PCp PCpJo PCp ©

where tilde means the spacial Fourier transform which is defined for an arbitrary function
F by

Fs, 1= f d*xe**F(x, 1). 10

Equation (9) translate the convolution integrals in (8) into much simpler operations in the
Fourier space (Appendix).

Once we have 7(s, 1), the temperature distribution 7(x, ¢) is given by its inverse Fourier
transform:

T(x,t)=Q2m)3 f d3se T (s, 1). an

The integration over time that remains in (9) can be easily carried out for most cases
of interest. For example, if the power deposition Q(x, ¢) is turned on suddenly and remains
a constant afterwards, we obtain

F = (2o 2.\ l7 l_l__.{ - [_<& 2)]}"
TG, t) exp[ (pcp+sa>t]To(s)+ks2 olk 1 —exp pcp+soc t] 1Qes),
(12)

which can be implemented using the Fast Fourier Transform (FFT) algorithm (Press et al.
1992). Specifically, we use the FFT to calculate To(s) and Q(s) from the initial temperature
distribution To(x) and the power deposition Q(x) respectively. Substitution into equation
(12) gives us T'(s, ¢) at any desired time ¢ > 0. The temperature distribution at time ¢: T'(x, 1),
is then given by the inverse FFT of T¢s, 1).

Upon examining (12), we see that one of the important parameters characterizing the
bioheat equation is pc,/uo, which gives the time scale on which steady-state is reached.
With the parameters given in Table 1, it amounts to about 10 min. Another important
parameter, which will become clearer in the next section, is (k/u0)"”> which gives a length
scale characterizing the range of influence. It is important to keep them in mind for a good
qualitative understanding of the bioheat equation.

Table 1. Parameters.

k 60X1073Wem™'K™!

do 67X1073*Wem 3 K™!
3

p 10gem™
cp 40Jg 'K™!
o 0-01 mho cm ™!

The following sections will be the application and generalization of what has been
developed here. The parameters k, cp, p, and o that we will use are those given in Table
1 unless stated otherwise.
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3. Steady state
The steady-state temperature distribution is obtained by letting — o in either (12) or
(8). We obtain in Fourier space:

1
()=~ Q( ), 13)
and in coordinate space:
1
st — 3.7 _ 12y — ’

T (x) fd x4—7tklx—x’|exP[ (no/k) “Ix — x'11Q(x"). 14)

If the power deposition Q is independent of z, (14) reduces to

12

T(x,y) = fdx dy’ —‘K0<(#o/k)l/2[(x Xy +@-y)l )Q(x’,y’), 1s)

where Ko(x) is the modified Bessel function of order zero (Abramowitz and Stegun 1964).
If Q depends only on a single variable z, (14) reduces further to

st — N ! 1 - 12y, _ ¢ ’
T%(z) f_wdzzmexp( (1olk) "z — 2’ Q). (16)

Equations (14)—(16) are useful when the analytic expression for the power deposition is
known. Otherwise direct application of (13) with a FFT algorithm is often more convenient.
Here it should be pointed out that, as far as the steady-state temperature is concerned, the
only relevant parameters are k and uo. The concept of SAR (Q/pc,) is not a very useful
one here because it gives a false impression that the temperature depends on p and c,. The
importance of the parameter (k/uo)"? is quite clear from (14)—(16). It tells us that given
power deposition at a certain point, how far its influence is going to reach. Furthermore,
if two media have the same (k/p0)"?, the steady-state temperature distribution induced in
‘them by the same power deposition would differ by at most a multiplication constant.

In § 2 we made the assumption of an infinite medium. This actually means that the region
of interest, i.e. the region where power is deposited, is away from any surfaces by a distance
far greater than (k/p0)"* which amounts to 0-95 cm with the parameters given in Table 1.

4. A point source

The solution for a point source is of fundamental 1mportance for all linear differential
equations because of the superposition principle. Given such a solution, we can superimpose
them to obtain the solution for a arbitrary source distribution. This is in fact the meaning
of (14)—(16). For the bioheat equation, the solution for a point source Q(x) = P6(X — Xg)
in an infinite homogeneous medium is given by

st = P = (uofl)V2Ix — xg!

S — ’ an
where P is the total power of the point source. Note that (17) is basically a screened Coulomb
potential, with screening provided by blood perfusion. This is one of the simplest solutions
of the bioheat equation, and it suggests a simple way of measuring both the heat conductivity
k and the perfusion parameter uo. By measuring the temperature at two different radii 7,
and r; from the source, we have from (17):

= n o o
B 47tr1T“(r1)exP{r2 -n [Inro/ry) + In(T"(r2)/T (rl))]}, (18)

and
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P

(ra—n)? {1In(ri/r2) + ln[_Tﬂ(rl)/T'"(rz)] 12. (19)

Bo=
The blood perfusion and thermal conductivity measured this way can have a spatial
resolution of better than (k/p0)"?, which is 0-95 cm with the parameters that we are using
(Table 1). Better resolution can be achieved for greater perfusion.

* 5. Thermal conduction interstitial system

Here we consider a system made up of N parallel infinitely-long hot needles, which is
a good approximation to the system under consideration if the needle spacing is small
compared to their length. This assumption of parallel infinitely-long needles changes a
complicated 3-D problem into a 2-D problem, greatly reducing the demands on computer
power (all calculations presented in this paper were done on an IBM PC 386). Needle
positions are specified by a set of parameters (x;,y;) fori=1,...,N. The radius of the
needle is defined as r,, assumed to be the same for all needles. While this latter assumption
is not necessary, it is a practical reality. Our goal is to find the resulting steady-state
temperature distribution T*(x) when the needles are kept at the constant temperature
T.i=1,...,N).

This desired temperature distribution can be found by solving a boundary value problem
with the requirement that the temperature should be equal to the T; on the surface of the
i-th needle (Deford et al. 1990). There is however a much more efficient method for solving
this problem. It is based on the idea of the effective source, very similar to the method of
image charges in electrostatics (Jackson 1975).

Consider what happens if we replace the set of hot needles by a set of line (power)
sources at the same positions:

. .
0 y)= 2, Pid(x—x)d( =3, (20)

where P; is the power deposition per unit length of the i-th line source which is left to be
unknown at this point. Substituting (20) into (15), we obtain the steady-state temperature
distribution T§ for the power deposition as given by (20):

1 N 172
TE(x,y)= EZ P,-Ko<(udk)”2[(x - )+ =y ) (1)

where Ko(x) is again the zeroth order modified Bessel function which can be evaluated rather
easily (Abramowitz and Stegun 1964). The question is how the solution given by equation
(21) is related to the desired solution 7% (x) for hot needles. Since both T§#(x) and T*(x)
satisfy the same equation: '

szT - [l()T =0

outside the needles, they would be equal if a set of P; can be found such that the boundary
conditions on the hot needles can be satisfied. In cases where the radius of the needles is
much smaller than their spacing, the boundary condition of fixed temperature
T:i=1,..., N)on the needles translates via (21) into the following set of linear equations
for P;:

Aiij= T;, (22)
j=1

J
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Figure 1. Steady-state temperature distribution for thermal conductive heating. All nine needles are
maintained at 10°C above the blood temperature. X- and Y-axes units are cm. Temperature
is in degrees above blood temperature. These axis dimensions also apply to Figures 2, 4, 5,
6 and 7.

with

1
~— Ko((polk)\"dy), (23)

A=

where

dym {[(x—x,-)2+(y—y,.)2]“2 for i #j 24

n fori=j

The required temperature distribution 7% (x) for hot needles is then given by (21) with P;
being the solution of (22). The essence of this approach is similar to that behind the method
of image charges in electrostatic problems (Jackson 1975), i.e. to replace the boundary
conditions by some effective sources outside the boundary (which in our case means inside
the needles). This same idea will also be used in the next section for finding the power
deposition and in § 8 for finding the Green’s function for different boundary conditions.

Figure 1 shows the temperature distribution for a 9-needle configuration. The needles
are distributed on a 3 X 3 rectangular grid with needle space of 1-1 cm and are maintained
at 10°C above the blood temperature. The radius of the needles r, is assumed to be 0-75 mm.
These parameters are so chosen to compare the result of thermal conductive heating
obtained here with that of RF heating to be discussed in the next section.

6. Interstitial RF system
In interstitial RF systems, heating is achieved by applying RF voltage on a set of
implanted needles (Corry et al. 1993, Martinez et al. 1993). The power deposition is given
by
0(x) = (6/2)E*(x) E(x), (25)

where E(x) is amplitude of the electric field (complex in general) at point x as a result of
applied voltage; o is the electric conductivity (which may be frequency-dependent at higher
RF frequencies). Due to the large RF wavelength, the determination of the electric field can
be treated as an electrostatic problem. Assuming the needles to be infinitely long and the
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Figure 2. Power deposition resulting from interstitial RF heating in a nine needle configuration. The
voltage pattern is shown in Figure 3. Power density is given in units of Wiem®,

dielectric constant to be position-independent in the volume of interest, the electric field
amplitude is given by
N A A
E(x) = q_i(x x:)’:"‘()’_)’z)i”
S ) o —w)
where g; = q:/2ne is what we will call the reduced charge on needle i, with g; being the
amplitude of actual charge on needle i. £ and ¥ are the unit vectors in the x- and y-direction
respectively. In obtaining (26) we have made use of the fact that the radius of the needle
(0-75 mm) is much smaller than needle spacing (1-1 cm). Reduced charges on needles can
be found using voltage differences as input and the fact that the sum of charges on all needles
is zero. We obtain

(26)

N
EA;jq]"—'bi. (27)
ji=1

Taking an arbitrary needle with index iz to be the reference needle (to which all voltage
differences are referred), the elements of A and b are given by

= {ln(dmj/d,-,-) for l=/= l:R (28)
1 for i=ig
and
bi= Vi~ Vi. (29)

Here V; is the voltage of the i-th needle. Vi, is the voltage on the reference needle. d;; is
defined in the same way as in (24). Note that the power deposition is independent of the
dielectric constant (under our assumption that it is a constant in the volume of interest).

Figure 2 shows the power deposition pattern calculated for a 9-needle configuration.
The needles are distributed on a 3 X 3 grid with a spacing of 1-1 cm, and the voltage pattern
is shown in Figure 3 with V, _ = 50 Volts. Figure 4 shows the corresponding steady-state
temperature distribution. It is calculated by using FFT and (13). It is smoother than what
was achieved by thermal conductive heating (Figure 1) because the power deposition as
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Figure 3. One of the possible voltage patterns for a nine needles interstitial RF heating configuration.

shown in Figure 2 is more diffuse than the equivalent power deposition for thermal
conductive heating. Figures 5-7 show the temperature distribution at 1, 4, and 12 min after

power is turned on. They are obtained from (12) using FFT.

Note how the temperature

distribution is gradually smoothed out by thermal conduction.

7. Description of ‘thermal washout’

The term ‘thermal washout’ refers to the decay of temperature after the power deposition
is turned off. For an infinite homogeneous medium, this process is described by the first

term of (8) or (9). That is

TG 1) = ame 4P f d*x' To(x' Jex [ -
, (4mar)? (]
10
r %
8 %
;"' % "o’o“"“\
N
Vi ISR N
- SRR
i T '0“‘0’ SIISSUH RRITTN
* / ////”////////,,"”""‘” ‘:"‘":':’:’ XA 1\ ‘\\‘\\\\\\\‘\\\\
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Figure 4. The steady-state temperature distribution resulting from the power deposition as
shown in Figure 2. All temperature distributions are given in units of degrees C above the blood

temperature.
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Figure 5. Temperature distribution 1 min after the power deposition as shown in Figure 2 is
turned on.

or in terms of Fourier transforms

(s, )= exp[ <& + 5 oz) ]To(s). €]}

PCp
The important point here is that the time dependence of the temperature at point X depends
not only on the tissue parameters (including perfusion), but also on the whole initial
temperature distribution. The time dependence is not a simple exponential function unless
the initial temperature distribution is uniform. Take, for example, a Gaussian distribution:

To(x) =T exp[ -—(x— xo)zla:l. 32)
°f
e
i f
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Figure 6. Temperature distribution 4 min after the power deposition as shown in Figure 2 is
turned on.
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Figure 7. Temperature distribution 12 min after the power deposition as shown in Figure 2 is
turned on.

From (30) we obtain

T(x, 1) =Toe~ <#°’f’fr>’(

372
p— 4”) expl — (X — Xo)*/(o + dat)]. (33)

The time dependence is obviously not a simple exponential unless the limit of ¢ — o (the
uniform temperature limit) is taken. Another example is where the initial temperature
distribution is the steady-state solution for a point source, (17). The corresponding
temperature distribution after power-off is given in this latter case by

_r 1
4rklx — xol 2
— e =XI[ | — B ((pot/pc,) + Ix — X' (4ar) )]}, (34)

where ®(x) = 2Vn Jte =4t is the error function (Abramowitz and Stegun 1964). Again
the time dependence is far from a simple exponential. It therefore appears that thermal
washout is in general not a good method for obtaining accurate tissue parameters (Newman
et al. 1990). The ‘modified thermal clearance’ technique proposed by Waterman et al.
(1991), while avoiding these theoretical problems, is difficult to implement clinically and
very susceptible to any error in the positioning of temperature probes.

T(x, 1) = {e™ WP =x0l[] — D((ut/pc,)'? — Ix — x'(4ar)"?)]

8. Effects of boundary conditions

Up to this point our approach has been based on the assumption of an infinite
homogeneous medium. Modifications are required when this condition is violated. An
interesting case to consider here is heating near the surface of the skin, which will be treated
as a plane at z = 0 with the z-axis being perpendicular to the surface and pointing into the
body. Given some initial temperature distribution Tj(x) and power deposition Q'(x, ) inside
the body, i.e. in the region z > 0, we seek the temperature distribution 7'(x, ¢) inside the body
at subsequent times.

Following Newman et al. (1990), we consider both adiabatic and isothermal boundary
conditions. The adiobatic boundary condition is closer to reality and is specified by

iT(X, t) =0. 35)
9z z=0
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This boundary condition is a good approximation to the actual clinical situation if the
medium in contact with the body (e.g. air) has very small thermal conductivity. It is easy
to show that the time-dependent Green’s function is given in this case by

G'(x, t;x',t')=H(@—t")[4na(t —'t’ )]3’2exp[ - ﬂ)—(t - t’)]
PCp

< {ex [ =X+ Oo-y PG —z’)z]
P dat—1)
(x_xI)Z + (y _y,)z + (Z+Z')2]}
4a(t—1t")
Equation (4) still applies except that G, To and Q are replaced by G’, T¢, and Q' respectively,
and that the volume integral over the whole space is replaced by the volume integral over

the region with z = 0 only. The temperature distribution obtained upon substituting (36) into
(4) can be written in exactly the same form as (8) if we define Q and Ty as

+ expk[ - (36)

_[Q'(x, D) forz=0

ek = {Q'(x,y, —z) forz<o0 (37
_ [Totx, y,2) forz=0

Tox) = {T(’)(x, y,—z) forz<0 (38)

The same is true for all other formulae, (9), (12)—(16), (30), and (31), derived in §§ 2, 3,
and 7. This equivalence implies that if we replace the real power deposition Q' and the real
initial temperature distrubition T} by the effective ones defined by (37) and (38), we can
ignore the boundary condition, equation (35), and solve the problem as if we had an infinite
homogeneous medium. Take for example the systems we discussed in §§ 5 and 6 in which
the needles are assumed to be infinitely long. A better model may assume that needles are
‘half’ infinitely long, starting from the places where they enter the skin. Under the adiabatic
boundary condition, such a model would however not change our earlier results in any way
as long as the needles are inserted perpendicular to the surface, a conclusion which we can
reach immediately from (37) and (38). As another example, let us consider the heating due
to a plane propagating microwave. Upon normal incidence to the surface, the power
deposition is given by

Q'(x)=Qoe "* forz=0, 39)

where 7 is a tissue- and frequency-dependent parameter. The effective power deposition
is therefore [from equation (37)]:

Qoe " forz=0
0(x) = { N

Qoe for z<0
or simply

Q(x) = Qoe ™.

The steady-state temperature distribution for plane-wave microwave heating is obtained by
substituting the effective power deposition into (16). We obtain:

T (z) = ﬂoon'yz (e~ — y(uolk)”™ 12, (I‘O/k)VZZ). (40)

Here again the reference temperature (the zero point) has been taken to be the blood
temperature. From this equation we see that under the adiabatic boundary condition, (35),
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Figure 8. Temperature distribution as given by equation (40) for microwave (915 MHz) heating
under the adiabatic boundary condition. z = 0 refers to the surface of skin.

the temperature is equal to the blood temperature everywhere inside the body in the absence
of any heating (Qo = 0). Figure 8 shows the temperature distribution given by (40) for
Qo=0-1 W/em?; y = 0-64 cm ™' [for microwaves at a frequency of 915 MHz (Newman et
al. 1990)]; and other parameters as given in Table 1.

The second type of boundary condition, isothermal, is specified by

T'(X, )y=0=Ts. (41)

This type of boundary condition is appropriate if the medium in contact with the body is
a good heat conductor maintained at a constant temperature (such as an ice pad). In this
case it is much more convenient to take 7 instead of 7, as the reference temperature, so
that the boundary condition can be written as

Tx, t)l;=0=0 v (42)

by defining T=T" — T. Such a choice invalidates (2) which is derived from (1) upon taking
the blood temperature as the reference temperature. With our new choice of T; as the
reference temperature, i.e. defining 7= T — T, (1) becomes

T
pey — KT+ oT = Q'(%, 1) + po(Ty — To). 43)

The last term in this equation is very important and cannot be ignored unless T, = T;.
Without such a term, the temperature in the absence of power deposition (Q = 0) would
be equal to the surface temperature T, everywhere inside the body, which is obviously
incorrect because the temperature should of course approach the blood temperature T}, at
depth. We point this out because it was ignored by Newman er al. (1990). The
time-dependent Green’s function for (43) with the boundary condition of (42) is given by

G, t;x',')=H(t—t)[4na(t — t')]3’2exp[ - &(t - t_’)]
: PCp
_Ga=x P+ o-y)r+ (z—z’)z]
% {CXP[ daG—1)

x—x'V+@-y )+ (z+z’)2]}
do(t—1t')

- exp[ - (44)
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Figure 9. Normalized temperature distribution 7" (z)/(T, — T) in the absence of heating under the
isothermal boundary condition. z = O refers to the surface of skin. -

Equation (4) remains valid because of our choice of reference temperature. The formulae
derived this way are again the same as those in §§ 2, 3, and 7 [(8)—(9), (12)~(16), and
(32)—(33)] if we define the effective power deposition Q and effective initial temperature
distribution T as :

_[Q'(x, ¥, 2) + po(Te — To) forz=0
0w _ { —Q'(x,y,—2)— uo(Tp—Ts) forz<O (45)
and
o [Totx,y,2) forz=0
Totx) = { —Ti(x,y,—z) forz<0 (46)

In the absence of any heating (Qo = 0), the effective power deposition is given by

+po(Tp—T;) forz=0

47
—uo(Tp—T,) forz<O S

o) = {
Since it is independent of x and y, the steady-state temperature distribution in the absence
of heating is given by substituting (47) into (16). We arrive at:

T(z) = (Tp — T, (1 — e~ ®o0'™2), (48)

It approaches the blood temperature at depth as it should (remember that T has been taken
as the reference temperature so T, — T is the blood temperature as referred to 7). Figure
9 is a plot of the normalized temperature distribution T*()/(T, — T). This solution actually
tells us quite a bit, such as how much heat the body would lose to an ice pad or how much
it would gain from a hot pad with temperature greater than T;. They are determined by the

heat flux at the boundary (z = 0) and are given by
aT
—k—=| =) (T—-T) 49

9z [z=0

= —6-34 X 10~ 3(T}, — T,)(W/cm?), (50)

where the parameters in Table 1 have been used. Taking T, = 37°C and T, = 0°C, the heat
flux amounts to — 0-23 W/cm?. It means if we put an ice pad on our body, we would be
losing heat at a rate of 0-23 Joule per s per square cm.
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Figure 10. Temperature distribution as given by equation (52) for microwave (915 MHz) heating
under the isothermal boundary condition T(z = 0) = 25°C.

Now let us take another look at the microwave heating. For isothermal boundary
conditions the effective power deposition is given by {from (45)]

Qoe "+ (T, — T) forz=0
—Qoe "= uo(Tp,—T,) forz<0

1

ox) = {

Substituting it into (16), we obtain
Qo

— (e 7 — e—(uo/k)"ZZ)_ (51)

T(z) = (T, — To)(1 — e~ W) 4
Ho — ky

Remember that the reference point for this temperature distribution is 7} instead of 3. To
compare it with the result of (40) we have to shift them to a common origin. In taking the
blood temperature as the origin, (51) becomes

()= — (T, —T,)e" (notk)¥2z | Lz (e "—e" (;to/k)"ZZ)’ (52)
Ho— ky

which can now be compared with (40) directly. Figure 10 shows this comparison for
T, =37°C and T; = 25°C. Other parameters are the same as those used to generate Figure
8. We see that near the surface of the skin, temperature distributions are drastically different
for different boundary conditions. This big difference is related intimately to the fact that
for microwave heating, considerable power deposition is near the surface where the effects
of boundary conditions are greatest. If all the power were deposited inside (compared to
the characteristic distance (k/u0)""?), different boundary conditions would not have made
much difference.

9. Effects of inhomogeneous blood perfusion
In a real world situation, blood perfusion can be a function of both space and time. It
can be written generally as

B(X, 1) = po+ Au(x, 1), (53)

where o would represent some sort of average, and Ay, represents the deviation from this
average. In the case of an infinite homogenous medium, equation (2) becomes
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oT
peyy —kVPT + ol = Q(x, ) — Au(x, OT. G4)

With the help of the time-dependent Green’s function, it can be rewritten as an integral
equation:

T(x,1)= fd3x’G(x, 1 x', 0)Ty(x') + (l/pc,,)f dt' fd3x’G(x, tx, )0, )
0

- (1/pc,,)J’dt’ J'd3x’G,(x, XL, DHAu, T, 1), (55)
which can then be solved by iteration. The zeroth order solution is given by

TOx, 1) = fd3x’G(x, tx', O To(x') + (l/pcp)j dr' fd3x'G(x, 5x, )0, ).
0
(56)

In other words, the space- and time-dependent part of the perfusion is ignored in this order.
The solution to the first order in Ay is obtained by substituting the zeroth order solution
back into the left hand side (LHS) of (55). We obtain

T(x, 1) = TO(x, t)—(l/pc,,)f ar’ fd%c'c(x, 6 X, A, CTOX, ). (57)
0

The n-th order solution is obtained by substituting the (n — 1)-th order solution into LHS
of (55). The result is

T™(x, 1) =TOx, 1) — (1/pc,,)f dt' fd3x’G(x, 6xX, )Au, T D(x', t'). (58)
0

Equation (57) is of course only a special case of (58). In this way, starting from the zeroth
order solution (in which variation of blood perfusion is ignored), we can successively
improve our solution by going to higher order perturbations. It is obvious that the n-th order
correction is of the order of O(Au™). If the variation of blood perfusion is small, the first
order solution would often be sufficient.

If Au is time-independent and we are interested in only the steady-state temperature
distribution, (58) reduce to (we already know how to find the zeroth order solution from

§ 3):
1
st(n) — 7st(0) _ 3.7 _ 121¢ — </ ' st(n — 1!
" (x) = T"™(x) J’d x—__47rklx—x'lexP[ (rolk) “Ix — x'IJAu(x")T (x').(59)

Again the convolution integrals in these equations can be dealt with by Fourier transform
if analytical integration is not possible.

The cases of other boundary conditions can be dealt with in a similar fashion. We obtain
for the steady-state temperature distribution:

'—1__,‘,|CXP[ — (polk)"1x — x'1Q(x’), (60)

Tst(O) ___J’ 3.7
()= &5 i

and

1
T™(x) = T9O(x) — J.d3x'——, expl — (uo/k)Ix — x'11S"~ D(x’),  (61)
4mklx — x’|
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Figure 11. Assumed blood perfusion parameter.

where Q(x) is given by (37) for the adiabatic boundary condition and by

Q'(x,y,2) + pulx, y, 2)(Tp — T) forz=0
X) = 62
o) {—Q'(x,y,—z)—u(x,y,—z)(Tb—Ts) forz<0 ©2.
for the isothermal boundary condition. S{”(x) is defined by
Au(x, y, 2)T""(x, v, 2) for =0
n) = 63

SPe {Au(x, 9, =) T"™(x, y,—z) forz<0 ©63)

for the adiabatic boundary condition, and by
Au(x, y, 2)T(x, y, 2) forz=0
-
P =1_ Ap(x,y,— 2)T""(x,y,—2) forz<0 4

for the isothermal boundary condition.

As a simple illustration, let us consider how the steady state temperature distribution
as given by (40) (corresponding to microwave heating under the adiabatic boundary
condition) would be affected by blood perfusion inhomogeneity which depends on z only.
Specifically we will take

Au(z) = — 0-8puoe =07, (65)

with zo=3-0cm and o¢;=10cm’ The resulting blood perfusion parameter
§(z) = o + Au(z) is plotted in Figure 10. Since both Ay and T%™ depend only on z, (61)
becomes

©

1
Tst(n)(z) = Tst(O)(Z) — m . dz’ exp( - (ﬂo/k)ln'z —_ Z’l)Sit(n_ 1)(21), (66)
with
Au(z) T (2) for z=0
n) —
$i@ {Au( —)T*(—2) forz<0' ©7)

Figure 12 is the plot of steady-state temperature distributions obtained for different orders
of approximation. Qg has been taken as 0-1 W/em?, yas0-64 cm™ ! 50 that the zeroth order
temperature distribution is the same as that of Figure 8. Note that even when the variation
of blood perfusion is as large as shown in Figure 11, our perturbative expansion converges
very quickly. The second order result is already very close to convergence.
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Figure 12. Temperature distribution for microwave (915 MHz) heating with the blood perfusion
parameter as shown in Figure 11. Dot line: result of the zeroth order perturbation 7®(z), which
is the same as what is shown in Figure 8. Dash-dotted line: result of the first order perturbation
T%(M)(z). Dash line: result of the second order perturbation T*®(z). Solid line: result of the third
order perturbation T%®(z).

10. Conclusions

A comprehensive framework for solving the bioheat equation is established using the
time-dependent Green’s function and Fourier transform techniques. It can be further
extended to include the effects of spacially dependent tissue density, heat capacity, and
thermal conductivity, in a way similar to that described in § 9. However, for treatment
planning and machine design evaluation of localized heating methodologies, the theory in
its present form is sufficient.

The primary advantage of the Green’s function approach is that it provides opportunities
for deriving analytic results. It also provides a unified view of both the steady state and the
transient data. Such an approach can thus be a very useful alternative (or complement) to
other methods such as the finite difference and the finite element techniques, especially for
localized heating schemes where the variations of tissue parameters are small over the
region of interest. It is less useful if the region of interest is large and contains large
variations or discontinuities of the tissue parameters.

None of the examples presented are computationally intensive. The modelling of the
interstitial RF system is the most time-consuming and requires the use of FFT. But even
in this case it takes only 2 min on an IBM PC 386DX to generate a temperature distribution
on a 64 by 64 grid. The modelling of the thermal conduction hyperthermia system takes
even less time since the solution for an N needle configuration requires only the solution
of a system of N linear equations. Such implementations therefore have the potential for
online use during a hyperthermia treatment to model treatment parameters. While the
clinical utility of such an approach has yet to be established, the computational methodology
described here is not prohibitive.

Appendix

This appendix provides more details on the derivation of (9) which is the Fourier
transform of (8).

Both spacial integrals on the right hand side of (8) are convolution integrals, i.e. they
are both of the form
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f d*x'g(x'h(x — x"), (68)
where g(x) is equal to To(x) for the first integral and Q(x, ¢) for the second integral, and

h(x) =exp(~x%p),

with f being 4at for the first integral and 4a(z — t') for the second integral.
Recall that the Fourier transform of a convolution integral (68) is

HOIO! (69)

which follows directly from the definitions of the Fourier transform as given by (10) and
(11). To arrive at (9), we need further the Fourier transform of A(x):

h(s) = f d>xe®exp (— xPB), (70)

which is most conveniently calculated in spherical coordinates as follows. Defining r = Ix|
and s =Isl, we have

h(s) = f dr2nre™"* f d0 sin Be'sreos?
0 0
o 1
= J dr2nre " f déert
0 -1

=f dr2mre”"P(is) " (e — e 7). (71)
0
Since the integrand in (71) is a even function of r, we can rewrite it as

h(s) = (n/s)i ™! f déte ™ FlB(eist — ¢ ist)

= (27r/s)1m[ f dgge-@’ﬂ“sé], (72)

where Im means taking the imaginary part. The integral in (72) can already be found in tables
(see e.g. Gradshteyn and Ryzhik 1980). Or one can derive it as follows.

o

f déée—é2/ﬁ+is§ - e-ﬂs2/4j df(f _ iﬂslz)e—(i—iﬂs/Z)Z/ﬂ+ i(ﬁS/Z)e_ﬂszM

f dée™ (& —ipsi2)p

=B J déte™ B + i(Bs/2)e P f dée™ P, (73)

The first integral in (73) gives zero since its integrand is odd in £. For the second term we
can use the familiar result:

f dée™ " = (np)'”, (74)

which may be the integral that is most often encountered in the solution of heat transfer
equations. The trick for doing this integral can be found in Feynman (1972). We thus arrive
at



Solutions to the bioheat equation 285

f d{fe —EUB+isé — i(nl/2ﬁ312s/2)e - ﬁs2/4. (75)

Substituting this integral into (72) we obtain
h(s) = (np)*e™ P, (76)

With the help of (68), (69) and (76), (9) follows directly from the Fourier transform
of (8). Lastly, we note that (9) can also be derived by taking the Fourier transform of (2).
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