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Abstract
We show that universal properties of a many-atom quantum system exist at
a much higher density, or a much shorter length scale, than those implied by
traditional theories for a dilute Bose gas. In particular, a universal equation of
state at length scale β6 = (mC6/h̄

2)1/4 (corresponding to the van der Waals
interaction) is defined and investigated by combining the concept of effective
potential, the constrained variational method and the analytic solution for the
van der Waals potential. In one application, we show that a many-atom Bose
system with negative scattering length may form a metastable liquid Bose–
Einstein condensate (BEC) state with an equilibrium density that is controlled
by a scaled scattering length.

The realization of gaseous Bose–Einstein condensate (BEC) [1–3] has brought an explosion
of activities in the study of many-atom quantum systems [4, 5]. Considerable advances have
been made in using the Gross–Pitevaskii (GP) equation to simulate a vast variety of interesting
phenomena that characterize a macroscopic quantum system [4, 5]. In terms of microscopic
understanding, however, the rate of advance has been more limited. Much of what we know
can still be summarized by the famous equation of state for a quantum gas of hard spheres
[6, 7]:

E/N = 2πh̄2a0
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. (1)

Here ρ = N/V is the number density, and a0 is the two-body s-wave scattering length. The
first term in this equation represents the mean-field interaction that accounts for much of the
GP theory. The second term, often referred as the Lee–Huang–Yang (LHY) correction [6, 7],
accounts for quantum fluctuation.
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While equation (1) represents a universal property of Bose systems with short-range
interactions, its range of applicability is very limited. In addition to the well-known restriction
of ρa3

0 � 1, equation (1) tells us nothing about how atomic interaction would affect the
equation of state for a0 = 0. Is a condensate with zero scattering length stable? For a0 < 0,
the LHY correction is not meaningful and all we know is the mean field. It is based on this
single term that one has generally believed that a homogeneous condensate with negative
scattering length would collapse (see, e.g., [8]). Rigorously speaking, however, all the mean
field tells us that the condensate can be expected to contract some to a higher density. Without
knowing what happens at higher densities, the fate of a condensate, whether it collapses or
not, or the nature of the collapse cannot be understood theoretically. Issues such as these are
more than theoretical curiosities, they are of increasing practical importance especially due to
experiments in which a0 is adjustable via a magnetic field [9] and can in principle take on any
value (see, e.g., [10–12]).

In all cases where equation (1) fails, one has to look at an atomic interaction at a shorter
length scale. The key question is then: do universal properties exist at shorter length scales, or
equivalently, at higher densities? The underlying physics would be much less attractive if they
do not exist. Fortunately, the answer is yes, as we have argued in a recent publication [13].
In particular, at the first length scale beyond the shape-independent approximation, atoms see
the van der Waals interaction, −C6/r6, corresponding to a length scale β6 = (mC6/h̄

2)1/4.
The universal properties at this, and shorter length scales, can be investigated systematically
using the concept of effective potential [13].

In this work, we define more explicitly the universal properties at the length scale β6 for
a many-atom quantum system with the van der Waals interaction. The universal equation of
state for a Bose system is investigated by combining the concept of effective potential [13],
the constrained variational method [14, 15] and the analytic solution for −C6/r6 potential
[16]. In particular, we show that the energy per particle for a system of negative scattering
length does not decrease with density indefinitely as predicted by the mean-field term in
equation (1). Instead, it reaches a minimum at an equilibrium density that is determined by a
scaled scattering length. One implication of this result is the existence of a liquid BEC state
that behaves very much like liquid He II. Its implication on the collapse of a condensate will
also be addressed briefly.

Consider a class of N-atom quantum systems described by a Hamiltonian

H = − h̄2

2m

N∑
i=1

∇2
i +

N∑
i<j=1

v(rij ), (2)

where v(r) → −Cn/rn (n > 2) for r → ∞. The universal properties at length scale
βn = (mCn/h̄

2)1/(n−2) are defined by the corresponding properties of an effective Hamiltonian,
Heff , in a limit that eliminates all length scales in Heff that are shorter than βn [13].

The effective Hamiltonian, Heff , is the same as H with v(r) replaced by an effective
potential veff(r). There is a considerable freedom in the choice of veff(r), provided that (a) it
has the same long-range behaviour as v(r), (b) it yields the same short-range parameter Kc

[17, 13] and (c) it is repulsive at short distances and rises faster than 1/r2. To be specific, we
choose here the effective potential to be a hard-sphere with an attractive tail (HST) [13]:

veff(r) = vHST(r) =
{∞, r � r0

−Cn/rn, r > r0.
(3)

With this choice, the limit that eliminates short-length scales in Heff will be formally denoted
by r0 → 0+. It has to be understood, however, that this limit is taken in such a way that Kc is
kept a constant. For the HST effective potential, this means that r0 takes on a discrete set of
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successively smaller, but never zero, values. The corresponding effective potentials all have
the same Kc, with the only difference being that the ones with smaller r0 support a greater
number of bound states [13].

The physical properties of H around the N-atom threshold are well described by universal
properties defined through Heff because their corresponding two-body problems have, to a
very good approximation, the same bound spectra, the same scattering properties and the
same wavefunctions (where it matters) over a wide range of energies around the threshold
[17, 13]. An N-body state, be it much more complex, can in principle be constructed by
successive coupling of i-body states around the threshold to form (i + 1)-body states around
the threshold, starting from i = 2 [13]. We emphasize that embedded in this argument is
the important concept of angular-momentum-insensitive quantum-defect theory (AQDT) [17],
namely two-atom states of different angular momenta can be described by the same short-
range parameter Kc around the threshold. If this were not the case, the effective potential
would just be another pseudopotential, and would not be able to describe states for which the
coupling of difference angular momenta is important.

This method of investigating universal properties of an N-atom quantum system is a
powerful one. It is applicable to any N � 2, and can be generalized to shorter length scales.
The investigation can be either analytical or purely numerical. We focus here on a single
property of a single state (the BEC state), namely the equation of state (energy per particle
versus density) for a homogeneous system of a large number of bosons. By scaling all energies
in Heff by sE = (h̄2/m)(1/βn)

2 and all lengths by βn, it is clear that the result, in the limit of
r0 → 0+, can be written as

Es/N = �̄(n)(ρs,K
c), (4)

where ρs = ρβ3
n is a scaled density, Es = E/sE is a scaled energy and �̄(n) is a universal

function that is uniquely determined by the exponent of the long-range interaction, namely the
n in −Cn/rn. For n > 3,Kc can be related to a scaled s-wave scattering length, a0s = a0/βn,
by [13]

a0s =
[
b2b �(1 − b)

�(1 + b)

]
Kc + tan(πb/2)

Kc − tan(πb/2)
, (5)

where b = 1/(n − 2). We can therefore write

Es/N = �(n)(ρs, a0s). (6)

Equation (4) or (6) is what we call the universal equation of state at length scale βn.
The many-body problem with vHST(r) is, of course, still nontrivial. But like the many-

body of hard spheres, it is easier than the original problem because two-body solutions for the
van der Waals potential are known analytically [16]. We investigate �(6) here using the lowest
order constrained variational method (LOCV) [14, 15]. Not only has it been shown to give
excellent results for hard spheres over a wide range of densities [15], but also one approach
in which the limit of r0 → 0+ can be taken analytically. The method is based on the Jastrow
wavefunction [18] for a many-body Bose system:

� =
∏
i<j

F (ri − rj ). (7)

Defining u(r) = rF (r), a variational procedure leads to [14, 15][
− h̄2

2µ

d2

dr2
+ v(r) − λ

]
uλ(r) = 0, (8)
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to be solved with boundary conditions uλ(r = d) = d and u′
λ(r = d) = 1, and a normalization

condition

4πρ

∫ d

0
u2

λ dr = 1. (9)

Here µ = m/2 is the two-body reduced mass, and d is a healing distance beyond which F = 1.
To the lowest order, the energy per particle is given through λ by

E/N = λ/2 − 1

2

C6

d3

(
4π

3
ρ

)
, (10)

where the second term arises from contributions beyond the healing distance d, due to the
long-range nature of the van der Waals interaction.

Replacing v(r) by vHST(r), the solution of equation (8) is simply [16, 17]

uλ(r) = Aλ

[
f c

λs l=0(rs) − Kcgc
λs l=0(rs)

]
. (11)

Here Aλ is a normalization constant. f c
λs l

and gc
λs l

are the analytic solutions for the −C6/r6

potential [16, 13] that depend on r only through a scaled radius rs = r/β6, and on energy only
through a scaled energy λs = λ/sE . Specifically,(
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where

Bλsl =
{[

2
(
X2

λs l
+ Y 2

λs l

)]1/2
sin(πν)

}−1
, (13)

ξλs l(r) =
∞∑

j=−∞
bj r

1/2
s Jν+j (y), (14)

ηλs l(r) =
∞∑

j=−∞
(−1)j bj r

1/2
s J−ν−j (y), (15)

y = (1/2)r−2
s , and tan θ = Yλs l/Xλs l . Here the order ν, the coefficients bj , and Xλsl and Yλs l

are those defined in [16].
Imposing boundary conditions and taking the limit of r0 → 0+, we arrive at the following

two equations for two unknowns λs and ds = d/β6:

f c
λs l

(ds) − dsf
c
λs l

′(ds)

gc
λs l

(ds) − dsg
c
λs l

′(ds)
= Kc, (16)

4πd2
s

[
f c

λs l
(ds) − Kcgc

λs l
(ds)

]−2
∫ ds

0

[
f c

λs l
(rs) − Kcgc

λs l
(rs)

]2
drs = 1/ρs, (17)

in which l = 0. The only system-specific parameters in equations (16) and (17) are,
as expected, ρs and Kc. Their solution gives us the universal �(6) function in LOCV
approximation:

Es/N = �(6)(ρs, a0s) ≈ λs/2 − 1

2d3
s r3

ρs

, (18)

where rρs = rρ/β6 = (4πρ/3)−1/3/β6 is the scaled average separation between atoms at
density ρ.
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Figure 1. The universal equations of state at length scale β6 for many-atom Bose systems with
zero and positive scattering lengths, in LOCV approximation. The LHY results, as given by
equation (1), are also shown for comparison. The LHY results for zero scattering length are
identically zero and are not shown.

This formulation has been tested for both low and high densities (more details will be
presented elsewhere). For low densities (ρs � 1), the length scale β6 disappears and the
results are in excellent agreement with the LHY results of equation (1). For high densities,
the theory has been tested with liquid He II using C6 = 1.461 au and a0 = 172 au, obtained
from the HFD-B(HE) potential of Aziz et al [19], the theory predicts an equilibrium density of
1.80 × 1022 cm−3, and an equilibrium energy per particle of −6.53 K, in good agreement with
experimental values of 2.18 × 1022 cm−3 and −7.17 K, respectively [20]. Because 4He has
the weakest van der Waals interaction among all atoms, this comparison gives us a worst-case
scenario test of both our theoretical formulation and the concept of universal equation of state
at length scale β6. When combined, these results show that the present theory provides a
unified understanding of Bose systems over a very wide range of densities. The theory is also
applicable to an arbitrary scattering length as the representation of uλ(r) is well defined in all
cases. For alkali atoms, the equations of state are expected to follow universal properties up
to ρs ∼ 10, since the two-body wavefunction is accurately represented by equation (11) for
rs > 0.5 [13]. Beyond this density, interactions of shorter range are expected to come into
play.

In figure 1, we show equations of state for zero and positive scattering lengths. In
particular, it shows that a condensate with zero scattering length has energy per particle that
increases with density, and is therefore stable energetically. Experimentally, this state has
been used regularly as the initial state for collapse [10, 11].

Figure 2 illustrates equations of state for a set of negative scattering lengths. It shows
that energy per particle does not decrease monotonically with increasing density. Instead,
it reaches a minimum and rises again and eventually becomes positive. This behaviour has
a number of important implications. In particular, it means that a many-atom Bose system
with negative scattering length does not have to collapse. It may form a liquid BEC state
with a scaled equilibrium density, ρ0s , corresponding to the minima in figure 2. A system in
such a state behaves very much like liquid helium II, with the following characteristics. (a) It
obviously has negative energy per particle. This means that unlike a gaseous BEC state that
requires a trap to keep it together, a system in a liquid BEC state, once created, stays together
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Figure 2. Universal equations of state at length scale β6 for many-atom Bose systems with negative
scattering lengths, in LOCV approximation. The mean-field (MF) results, as given by the first
term in equation (1), are also shown for comparison.

when released from a trap. (b) It has positive compressibility, meaning that it supports phonons
and is a superfluid. For most atoms, the liquid BEC state is metastable just like the gaseous
BEC, with stability determined by the rate of molecular formation (see, e.g., [21]).

The example of 85Rb, which is of special interest in collapse experiments [11], gives a feel
for orders of magnitudes involved. Using C6 = 4700 au [22], which corresponds to a β6 =
164 au, the following results are obtained. For a0 = −1 au, corresponding to a0s =
−6.09 × 10−3, an equilibrium density of 8.78 × 10−2

(
1
/
β3

6

) = 1.34 × 1017 cm−3 and an
equilibrium energy per particle of −174 nK are predicted. For a0 = −10 au, corresponding
to a0s = −0.0609, an equilibrium density of 0.332(1

/
β3

6 ) = 5.05 × 1017 cm−3 and an
equilibrium energy per particle of −6.65 µK are predicted. For a0 = −30 au, corresponding to
a0s = −0.183, an equilibrium density of 0.685

(
1
/
β3

6

) = 1.04×1018 cm−3 and an equilibrium
energy per particle of −39.1 µK are predicted. Thus for alkali atoms, which have β6 	 1 au,
the densities of liquid BEC states are generally much smaller than those of normal liquids.
They are also much softer and have much smaller (absolute) energies per particle.

The equations of state presented here also suggest a different mechanism, or picture, for
the collapse of a condensate [11], in addition to the possibility of collapsing via three-body
recombination [8, 23]. Some ingredients of this picture are as follows. (a) A many-atom
system with negative scattering length is unstable at ρs < ρ0s not because an equilibrium state
does not exist for negative scattering lengths, but because it is away from the equilibrium.
The collapse is thus a relaxation process towards equilibrium. (b) Collapsing may occur
collectively through condensation into the metastable liquid state, even in the absence of
three-body recombination. A more careful quantitative analysis of this picture is still in
progress. But it seems likely that the liquid BEC state has already shown itself in the collapse
experiment as a part of the ‘missing’ atoms [11].

In conclusion, we have shown that universal properties of many-atom quantum systems
exist at length the scale β6. The behaviour of a BEC at this length scale exhibits many
interesting features, including a liquid BEC state for systems with negative scattering lengths.
A generalization to inhomogeneous systems (to take into account the trap) is straightforward,
especially in local density approximation. The results point to new challenges ahead for both
theory and experiment. What is the best way to achieve a liquid BEC state? Can it be created
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directly, instead going through a gaseous BEC state? What is the stability or the lifetime of
a liquid BEC state, especially for relatively large equilibrium densities? As stated earlier, the
stability is determined by the rate of molecular formation. This process is poorly understood
even in the gas phase [21], and no theory seems to exist at higher densities. As a rough guide
to future investigations, we point out that molecular formation will ultimately be quenched at
sufficiently high densities, with helium being an example. Let rρ0 be the average separation
between atoms at an equilibrium density. Molecular formation can only happen if there exist
molecular states that have sizes smaller than rρ0. As density increases from zero, the rate of
molecular formation first increases with density, then decreases and reaches a local minimum
at a density where the molecular state that is closest to the (two-body) threshold effectively
merges into the many-atom continuum. The rate will oscillate around a decreasing background
as the same happens to more tightly bound molecular states, until it eventually becomes zero
for sufficiently high densities. This qualitative picture gives hope that there may exist other
high density, robust superfluids other than liquid helium II that are sufficiently stable to be of
practical interest. Even for short lifetimes, the liquid BEC state can be expected to manifest
itself in the dynamical evolution of a condensate, such as collapse.
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