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Increasing interest in multiphoton absorption processes above the ionization threshold has
led theorists to reexamine numerical techniques for calculating radiative transition matrix
elements between states of a continuum electron moving at large radial distances in the field
of an atom or an ion. Here it is shown that accurate free—free radial matrix elements may be
obtained using the usual dipole length formula by means of a rotation at finite distance in
the complex coordinate plane together with solution of the free-electron wave function’s
phase and amplitude at finite distance in the complex coordinate plane. The procedure is
designed for use with numerically calculated wave functions for many electron atoms and
ions. It avoids the use of analytic asymptotic formulas as well as transformation to the dipole
acceleration formula and is accurate even for matrix elements between electron states that
are close in energy, which is the case for which the alternative integration-by-parts method
is inaccurate. We present comparisons of our numerical procedure with both analytic
results and results of the integration-by-parts procedure for the case of free—free electron

transitions in a pure Coulomb field.

INTRODUCTION

Radiative transition matrix elements between continuum
states of an electron moving in the vicinity of an atom or
an ion are central to the study of electron bremsstrah-
lung'2 and the continuous absorption spectra of stars.3°
These traditional applications plus increasing recent in-
terest in multiphoton absorption processes above the ion-
ization theshold'® have led theorists to reexamine nu-
merical techniques for evaluating such free—free radial
matrix elements.’’'® Among the procedures employed
are the use of the acceleration form of the electric dipole
operator,*13.4 use of an expansion based on repeated in-
tegrations by parts,®1216 use of the analytic asymptotic
expressions for the wave functions beyond some large ra-
dius,58 and use of an analytic Green’s function technique
based on quantum defect theory.'”-'8 As in the present
work, some of these methods employ integration con-
tours in the complex coordinate plane.1417:18

The general nature of the difficulty in evaluating free-
free matrix elements numerically is well recognized.
Theoretical methods for many-electron systems generally
produce wave functions that are most accurate at large
distances.*” The length form of the electric dipole opera-
tor, which weights the asymptotic region most heavily,
however, leads to radial integrals that are only condition-
ally convergent. Direct integration along the real axis is
unsatisfactory: oscillations of the integrand quickly lead
to numerical inaccuracies. The alternative of using analyt-
ic asymptotic forms (which permit analytic integration) at
finite distances from the origin is also inaccurate.

The ideal procedure when using standard many-
body numerical wave functions is to employ the length
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form of the electric dipole operator from the origin out to
the finite distance ro at which exchange integrals between
the free electron and the bound electrons are negligible.
One would like to employ a procedure that obtains a con-
verged value for the one-electron free—free radial matrix
element from ry to oo without the necessity of numerically
integrating oscillating wave functions over a large range in
r. Rotation of the integration contour into the complex
coordinate plane meets this need. In comparison with this
ideal procedure, previously employed procedures have
limitations. The iterative integration-by-parts proce-
dure®12.18 has convergence difficulties when the energy
difference between the initial and final free-electron states
becomes small. The use of analytic asymptotic forms5-8 for
the free-electron wave functions requires numerical inte-
gration of oscillating wave functions out to a large radial
distance ry if this approximation is to be valid to high ac-
curacy at ro and beyond. The use of quantum defect the-
ory'7.18 requires either experimental data or a separate
theoretical calculation in order to obtain the quantum de-
fect theory parameters that are required. Finally, the
transformation of the electric dipole transition operator
to the acceleration form*13:'4 or to a mixed-gauge repre-
sentation'? is probably not necessary to obtain accurate
results when carrying out the radial integrations in the
complex coordinate plane.

We show here that highly accurate free—free radial
matrix elements may be obtained simply using the dipole
length operator and a rotated straight-line trajectory in
the complex coordinate plane. For the case of a long-range
Coulomb field, we adapt the procedure of Martins?° to
obtain highly accurate Coulomb phases and amplitudes in
the complex plane. Other cases for the asymptotic poten-



tial seen by the free electron may be treated analogously
according to the procedures of Burgess.?! We compare
our numerical procedure with the commonly used®1216
integration-by-parts procedure for the case of free—free
transitions in a pure Coulomb field in order to check each
of the two methods against analytical predictions.

I. TWO NUMERICAL METHODS FOR FREE-FREE
RADIAL INTEGRALS

A. Generalities

The reduction to radial integrals of the free—free transition
matrix element between two many-electron, multichan-
nel wave functions has been carried out elsewhere.'"13
We focus, therefore, solely on the one-electron radial inte-
gral,

f ulelyirif (rutelyridr
0

= f u(E1I1;r)f(r) U(€212,'7') dr + 1("0,61[1,6212) f (1a)
0
where
[(7‘0,61[1,6212)2'[ U(61[1}r)f(f‘) U(Gglg;r)dr, (1b)

?‘(r) is a one-electron radial operator having the coordinate
space representation f(r), and u(el;r) is a one-electron radi-
al wave function satisfying the following radial equation
in atomic units e =fi=m = 1)
d? ¢ | 2z ‘
— —— 4+ ——vir+ k2) ulebr)=0 (r>ro). (2)
(drz 2y °

It is assumed, following Burgess,2! that v{r) comprises all
short-range potentials, ie., r’vir)/~0 as r—o; that
¢ =ll+ 1) + a, where [ is the electron’s orbital angular
momentum and @/r? is a long-range dipole potential; that
€=k?/2; and that z is the effective Coulomb charge seen by
the free electron. The general solution of Eq. (2) is

ulelir) = A[§(r)] V2 sin[é(r) + 8] , (3)

where the amplitude function {(r) satisfies the differential
equation

2z d?
(r)2=(k2—£+———V(r‘))+ V2 —(£712), (4)
(ér] 2t ¢ 72 ¢
and the phase function ¢(r) satisfies
élr)= J. Sirdr. (5)

Also, A is a normalization constant and § is a phase shift.

The solutions of Egs. (4) and (5) appropriate for var-
ious values of &, ¢, z, and vir) have been treated by Bur-
gess.2' For brevity, we consider here only the common
case of an electron moving in a Coulomb field, i.e., k>0,
c=Illl + 1), z> 0, and V{r) = 0, which has been analyzed in
highly accurate numerical detail by Martins.2° For this
case the following asymptotic forms apply:

Hr) ————— kr + (z/k)n2kr) — 3 lmr + 0, + 6, (8)
§r) ————k, (7)

r—co

where 0, =arg I'[1 + [ — i(z/k}]. We also assume the radial
wave functions to be energy normalized (in a.u.), so that

A=(2/mV2. ' (8)

Substituting Egs. (3) and (8) in Eq. (1b), we write the inte-
gral whose value we seek as

1(7‘0,6'111,62[2)
—2 * firisin[¢4(r) + 841sin[@o(r} 4+ 5,]dr
(£1621172

We note that the dependence of / on the particular atom or
ion being studied comes solely from the phase shifts §,
and &,. This fact may be useful for large-scale tabular com-
putations of free-free matrix elements since trigonomet-
ric relations may be used to write Eq. (9) in the form of a
sum of products of a factor containing the phase shifts and
an integral over the functions f'(r), ¢(r), and {(r). These lat-
ter functions depend only on the long-range field and are
independent of the particular atom or ion being studied.
In the rest of this paper we keep #(r) and & together, inside
the integral, for simplicity of notation.

(9)

T Jro

B. Integration-by-parts method

In this method a convergence factor e ~ ¢ is introduced
into the integrand in Eq. (9) and the limit é—0 is taken.
Using a standard trigonometric expression to combine the
two sine functions, we may rewrite Eq. (9) as

[(r0,6111,€2l2)E[+ —-I, (10a)
where

I*=—1lim | e~ “{*(rig*iricosx*(rdr, (10b)

0 Jr,

EE(r=Eor) £ &4(r), (10c)

grin=fn{m& L2+, (10d)

XE@r) = [@o(r) + 821 £ [¢4(r) + 64 . (10e)
Now, since

£* cosxt dr=dlsinx™®) (11)

[due to Eq. (5) and the fact that the phase shifts § have
radial derivatives equal to zero], we may write

o

It= —lim e~ g*(rd[sinx*(r)]. (12)

€0 Jry
Repeated integration-by-parts results in the following ex-
pansion for Eq. (12):

o M (e R

xsin(xi(r; + 12”-)] : (13)
The first four terms of Eq. (13) have been presented by
Aymar and Crance.? The first few terms of the expansion
in Eq. (13) have also been used in the calculations of Pind-
zola and Kelly® (who employ the analytic asymptotic
forms for the wave functions in their expressions) and of
L'Huillier er al.'8

C. Complex coordinate rotation method

In this method the desired integral, Eq. (9), is again defined
by Eq. (10a), where now, however, /= is defined as fol-
lows:
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It=— Ref EE(rg*(rexplixt (] dr. (14)

]

Here Re denotes the real part of the integral and £ *(r),
g* (r), and x * (r) are defined, as before, by Egs. (10c)-{(10e).
In order to make the integral in Eq. (14) converge we make
the following coordinate transformation:

r—ro + re®. (15)

Now
liE—ReJ Ex(ro+ rexpif) g = (ro + rexp i0)
0

Xexplix*(ro + rexp if)] e dr. (16)

If we assume €, > €4 so that k, > k4, then from Egs. (6) and
(10e) we see that x * (r)> 0 for large r, and hence we re-
quire 0 < @ < minorderthat/* converges. In practice, one
achieves the fastest convergence by choosing 6 = 7/2.

In this method ry must be chosen such that the radial
one-electron wave function has the asymptotic form in
Eg. (3). The phase shift § is then a constant (i.e., coordinate
independent). One then solves Egs. (4) and (5) for the am-
plitude and phase functions in the complex coordinate
plane at each position r along the line defined by ry + re®
forlarge enough rso that the integral in Eq. (16) converges.

I1. RESULTS AND DISCUSSION

We compare in Table I the integration-by-parts and the
complex coordinate rotation procedures, described in the
previous section, for evaluating free—free electric dipole
length matrix elements in the case of a free electron mov-
ing in a pure Coulomb field. For this case analytic results
are also shown in Table I. They were obtained as de-
scribed in the Appendix. In this case the phase shifts § are,
of course, zero and the radial transition operator f(r) is
simply equal to r.

In evaluating the desired integral in Eq. (1a), the inte-
gration from 0 to ry in Eq. (1a) was carried out along the

TABLE L. Free-free dipole length radial integrals for atomic hydrogen.

real axis. In the integration-by-parts method, we evaluat-
ed the integral / [cf. Egs. (1b) and (10a)] using the first four
terms of Eq. (13). None of the applications® 2.1 of this
method has used more than four terms. In the complex
coordinate rotation method, we evaluated the integral /
[cf. Egs. (1b) and (10a)] using Eq. (16) with 6 = 7/2. In both
methods we used the procedure of Martins?° to evaluate
the phase [Eq. (5)] and amplitude [Eq. (4)] functions at fin-
ite values of r. In using the procedure of Martins?? in the
complex coordinate plane, we found it more convenient
to replace Eq. (4.2) of Ref. (20b) by?2

_ . (771.—1 - igL—l) ( gL )1/2]
¢ =60, lln[ [w2L2 + 1)/L2]V2 \§, _, ‘
(17)

In the notation used by Martins,?0 L is the electron’s orbi-
tal angular momentum, ¢, is the phase function that we
denote by ¢, £, is the amplitude function that we denote
by &, and k=k/z.

For ry = 20 a.u,, Table I shows that both the integra-
tion-by-parts procedure and the complex coordinate rota-
tion procedure are quite accurate when Ae=e, — €, =06
a.u. When A€ = 0.043 a.u., however, the integration-by-
parts procedure fails to give accurate results. While the
results we give in Table I are those obtained from the first
four terms in the expansion of Eq. (13), we were not able to
obtain convergence even when higher terms were includ-
ed. (In fact, this is why we switched to a complex coordi-
nate rotation method!) When r, = 100 a.u., the integra-
tion-by-parts procedure is able to give accurate results for
Ae = 0.043 a.u., but these results are not as accurate as
those of the complex coordinate rotation method, and
they require integration over amuch larger range in r than
is required by the complex coordinate rotation method,
which obtains accurate results at ro = 20 a.u.

We conclude that the complex coordinate rotation
method presented here is a much more reliable and accu-
rate method than the integration-by-parts procedure. The
integration-by-parts procedure must be used with care

§& uleqdy;r) ruleglyr) dr

Complex
Integration- coordinate
by-parts rotation Analytic
rola.u)? € la.u) 1 €rla.u.) A result® result’ result?

20 0.1 0 0.7 1 1.293 30 1.299 30 1.299 30

20 0.1 1 0.7 0 0.356 87 0.356 95 0.356 94

20 0.1 1 0.7 2 0.723 44 0.723 39 0.723 39

20 0.1 2 0.7 1 0.087 81 0.087 83 0.087 82

20 0.016 0 0.059 1 113.920 111.060 111.060

20 0.016 1 0.059 0 59.234 57.943 57.943

20 0.016 1 0.059 2 91.986 114.240 114.240

20 0.016 2 0.059 1 34.836 33.414 33.413
100 0.016 0 0.059 1 111.060 111.060 111.060
100 0.016 1 0.059 0 57.935 57.944 57.943
100 0.016 1 0.059 2 114.240 114.240 114.240
100 0.016 2 0.059 1 33.405 33.414 33.413

“ Here ry, is chosen to be large enough so that the radial wave functions have the form in Egq. (3).

bSee Sec. I B.
“See Sec. I C.
9See Appendix.
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when the energy difference between the free-electron’s
energies in the free-free matrix element becomes small. In
fact, it is not clear to us whether the method is always
convergent. Given the high numerical accuracy achieved
by the complex coordinate rotation method (cf. Table I), it
appears also that there is no need to transform the electric
dipole operator to the accleration or mixed-gauge repre-
sentations.
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APPENDIX: ANALYTIC EVALUATION OF FREE-FREE
DIPOLE LENGTH RADIAL INTEGRALS FOR ATOMIC
HYDROGEN

We seek the matrix element of r" (where n =1 for the

electric dipole operator in length form) between two con-
tinuum radial wave functions,

Q= f ¥ (PR, (ridr . (A1)
o

The analytic expression for R,,(r), which has the energy-
normalized asymptotic form

1/2
Hk/(") ( 2 ) L

Tk r
X sin(kr + -i— In(2kr) — —;— Ir+ a’,) ) (A2)
where o,=arg I'll + 1 — iZ/k), is23
Rylr)=Cye~ " Fliz/k) + 1+ 1,2l + 2,2ikr],  (A3)
where

Z 1/2
CkIEz( )
1 —expl — 2mZ/k)]

2 /
% H §2 4 (z) ] (2kr)
s=1 2l + l)'
and where F is a confluent hypergeometric function.?*
Substituting Eq. (A3) into Eq. (A1) gives
Q k r Ckh’;P(a,;a) ’ (A4)

where

J’;”(a’,a)sf TRy =1t o fa’,yk'rifla,y — pkridr,
0
(A5)

and the new symbols have the following meanings:
p=2l'—10, s=n—I-0+1 y=2l+2 a'=iZ/k
+ ' + 1, a=izZ/k + | + 1, k'=2ik’, and «k = 2ik. Note that
since the radial function R, (r) defined by Eq. (A3) is real,
the complex conjugate in Eq. (A1) has no effect, i.e., we
could just as well have chosen to define @’ and «’ in Eq. (A5)
with / replaced by —i.

Equation (A5) is identical in form to Eq. (f.12) of Lan-
dau and Lifshitz.24 It is evaluated numerically by using the
recursion relations of Egs. (f.15) and (f.16) of Ref. 24 to re-
duceJ;” to a sum of integrals having s = p = 0. These inte-
grals J;° are expressed analytically in terms of a hypergeo-
metric function in Eq. (f.12) of Ref. 24.
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