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Abstract

The collapse experiment of a85Rb Bose–Einstein Condensate [E.A. Donley, et al., Nature 412 (2001) 295] is studied by
numerical simulation. We show that the time delay before collapsing observed in the experiment depends not only on the
interaction strength parameters but also on the collective motion before being tuned to collapse. We also qualitatively discussed
two necessary mechanisms for beyond mean-field theories on collapsing phenomena.
 2002 Elsevier Science B.V. All rights reserved.
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In Bose–Einstein Condensation (BEC) community,
it is well-known that a condensate with attractive inter-
action (characterized by negative scattering lengtha)
is metastable [1]. When its particle numberN exceeds
a certain value, it would collapse. This was initially
demonstrated in7Li [2], and has been studied within
the framework of the mean-field theory [3]. On the
other hand, with the successful realization of the Fes-
hbach resonance [4] in ultracold gases [5–7], the con-
straint on the initial particle number of BEC was over-
come, and an almost pure condensate can be prepared
at the initial time. What is more important, by this
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technique, the interaction of the condensate can be dy-
namically tuned and thereby many intriguing phenom-
ena were uncovered, most of which challenge current
theories [7].

In this Letter we focus on one of the phenomena
discovered by JILA group, namely, there is always a
time delay between the switching (to a negative scat-
tering length) and the time when the collapse actually
occurs [7]. All though several authors have studied
this problem [8,9] and obtained the dependence of the
delayed time (Tdelay) on the mean-field strength pa-
rameters which is similar to that of experiment [7],
our analysis and numerical simulation show thatTdelay
not only depends on the parameters but also on the
collective motion of the condensate before set to col-
lapse. We also briefly discussed necessary ingredients
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that should be included in beyond-mean-field theories
when one tries to fully understand the dynamical col-
lapsing phenomena.

Our work is based on the mean-field theory (MFT).
It postulates that the many-body ground state can be
described by a single-particle state which is macro-
scopically occupied byN bosons [1]. At zero temper-
ature, the non-condensed component can be safely ig-
nored, and the condensate (macro) wave function fol-
lows the Gross–Pitaevskii equation (GPE) [1]:

ih̄
∂

∂t
Φ(r, t)

(1)=
[
− h̄2

2m
∇2 + V (r) + g|Φ|2

]
Φ(r, t),

where g = 4πh̄2Na/m is a parameter that charac-
terizes the strength of mean-field interaction. For the
JILA experiment [7] under investigation here, the trap-
ping potentialV (ρ, z) is a cylindric harmonic oscil-
lator (HO) potential with frequencies:ω⊥ = 2π ×
17.5 Hz, andωz = εω⊥ = 2π × 6.8 Hz (whereε is
the aspect ratio). For convenience, in the follow-
ing discussions, length and time are scaled byL0 =√

h̄/(2mω⊥) andω−1
⊥ , respectively.

Following the experiment procedure, we begin with
a stable GPE ground state with positiveainit. Thena

is adiabatically ramped (AR) down to near zero. After
that, a is switched to pre-determined negative value
to trigger collapse. This tuning effect can be best
understood in Gaussian ansatz picture [1,10], in which
widths of the condensate shape are projected into the
coordinates of an imaginary particle that moves in an
effective potential:

(2)U(ρ, z) = ρ2 + ρ−2 + ε2z2 + z−2

2
+ g′

ρ2z
,

where g′ = 4
√

2/π Na. When a > 0, this effective
potential only has one minimum. Asa dynamically
tuned down, the minimum is continuously lowered and
moved towards the origin, which makes the imaginary
particle oscillate around every instantaneous position
of the minimum. Whena < 0 but larger than one
critical value acr [13]: |a| < |acr|, the particle is
bounded around the minimum by a barrier from an
abyss centered at the origin. While whena < acr <

0, the barrier vanishes and the particle falls into the
abyss, which corresponds to the collapsing of the

condensate. Nevertheless, the particle will have to
spend onthe way to the abyssa finite time, which
is just the physical reason for the phenomenon of
the time delay before collapse happens. On the one
hand, that finite time relies on the interaction strength
parametersNa: the largerNa is, the more abrupt the
edge of the abyss in the effective potential and thus
the shorter of theTdelay. On the other hand, if the
imaginary particle has a velocity towards the origin
beforea tuned to negative, or it is closer to the abyss,
Tdelay becomes shorter, and vice versa.

From this intuitive picture, it is reasonable to
conclude that the time delay phenomenon not only
depends on the parametersNa, but is also sensitive
to the initial state of the condensate before setting
to collapse. To quantitatively study this phenomenon,
we numerically solved GPE (1) with the second-order
implicit alternating-direction algorithm [11], always
starting from a stable GPE ground state whose wave
function is achieved with the imaginary time evolution
method [12]. We first studied the dependence ofTdelay
on the parameters. To exclude the influence of the
initial motion of the condensate, after the static ground
state is achieved, we suddenly switcheda to negative
without AR procedure. For|a| < |acr| the condensate
is found to show collective oscillation. Fora < acr <

0, the wave function eventually shrinks to a singularity
centered at the origin.

At this stage, it is necessary to clarify how the col-
lapse phenomenon is defined in this particle-number-
conserved simulation. In the prescription of MFT, the
shrinking of the wave function would lead to an infi-
nite increase of the particle number density at the ori-
gin (unless extra atom-loss term(s) is(are) introduced
into the GPE). In a numerical simulation, however,
the finite space grids and time step limit this infinite
growth, and one can only expect spikes of the central
density whose maximum values are grid-size depen-
dent. Hence, in a particle-conserving description, it is
reasonable to take the emergence of this type of spike
structure as the signal of a collapse. There are several
possible schemes to determine the onset of a collapse
more quantitatively. One candidate is to set a “trigger”
in the central density, above which the collapse is con-
sidered to occur [8]. An alternative is to use the peak
position of the first spike [9]. In this Letter a new cri-
teria is chosen: we numerically differentiate the cen-
tral density curve versus time and take the position of
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Fig. 1. The time delay before collapse versus|a|. ainit = 0.7 a.u.a0 is the Bohr radius. See text for details.

the first spike in the derivative curve as the beginning
of the collapsing. We believe that this scheme is more
physically justified. Our criteria reflect the fact of the
rapid growth of the central density in the collapsing
regime. The first spike in the slope occurs before the
first spike in density and provides a better indication
that the central density is starting to rise abruptly and
easier to be distinguished from the shape oscillation.
For any time afterwards, the GPE is no longer applica-
ble.

By this criteria for themean-field collapse, the de-
pendence ofTdelay on a and N are determined. See
Fig. 1. The profile of present curves agrees with pre-
vious experimental [7] and theoretical results [8,9],
which in turn supports our simulation method. A quan-
titative comparison with experiment data can also
be made. Forainit = 7 a.u., acollapse= −30 a.u.,
N0 = 15 000, the experimental value of the delay is
3.75(5) ms, while our simulation gives 3.5 ms; for
ainit = 89 a.u.,acollapse= −15 a.u.,N0 = 6000, the
experimental value is 3× 3.75(5) ms, while our sim-
ulation result is 15.92 ms. We think those agreements
are reasonable. Discrepancies could have come from
any beyond-mean-field effects that might be present in
the experiment and may also result from the conden-
sate shape oscillation at the initial time as discussed in
the following.

Next, we study the effect of the initial motion on
Tdelay. We begin with stable condensate witha =
207 a.u., and linearly ramp the bias field1 until a

reaches 0.7 a.u., within 200 ms and 800 ms, respec-
tively. The condensate is left at this scattering length
for another period of time (which we call it the relax-
ation time even though there is no damping mecha-
nism in GPE) before we switch it to a negative scatter-
ing length and look at the time delay before collapse.
Fig. 2(a), (b) depicts the time-variation of the mean
square widths during AR for different ramping time,
which illustrates the following points. First, it is diffi-
cult to achieve adiabatically. Even with a 800 ms ramp,
we are exciting collective oscillations, which remains
after the ramp has ended. Second, the faster the ramp,
the greater the amplitude of the induced collective os-
cillation. Thus the condensate experiences shape oscil-
lation during relaxation. This constitutes a continuous
variation of the initial state before collapsing, lead-
ing to the changing ofTdelay. Fig. 3 is theTdelay as
a function of the relaxation time after AR procedure,
which clearly shows the variation ofTdelay synchro-
nizeswith the shape motion of the condensate. This
effect has not been addressed in previous papers and

1 The relation ofa to the bias field we used is from [6].
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Fig. 2. Shape variation of the condensate during an adiabatic ramping and relaxation. Ramping time is: (a) 200 ms; (b) 800 ms. Relaxation time
is 60 ms. The vertical dash-dot lines indicate when the ramping stops and the relaxation starts. The solid lines are the numerical simulation of
GPE and the dashed lines are those of Gaussian ansatz.

should be observable in the experiment and may ac-
count for the discrepancy inTdelaybetween mean-field
theory and experiment. On the other hand, sinceTdelay
relates to the contraction speed of the condensate, this
effect may be utilized as a tool to control the collapsing
and exploding of the condensate, which complements

the current parametric controlling method througha

or N .
At the end of time delay process, it could be ex-

pected that the beyond-mean-field theory effects begin
to play more and more important roles, which involves
atom-loss mechanisms that disable the mean-field cri-
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Fig. 3. The time delay versus the relaxation time. After the adiabatic ramping of the bias field, the condensate is relaxed to oscillate with
ainit = 0.7 a.u. The solid and dashed lines are the mean squared axial width of the density profile. The symbols with connecting lines are those
delays starting from different condensate state during relaxation. Solid lines represents results from 200 ms ramping while dashed lines for
800 ms ramping. The scattering length in collapse regime is−7 a.u. Particle number is 6000. The length scale in the figure isL0 = √

h̄/(2mω⊥).

teria for collapse. When trying to precisely determine
Tdelay and fully understand collapsing and exploding
phenomena, we think two following ingredients are
essential. During collapsing, the condensate density
can become sufficiently high that the mean-free-path
of a hot atom can become shorter than the size of the
condensate. This is especially true if the hot atom is
created at an energy close to one of the resonances
of two-body collisions (the resonance may either be a
shape resonance or a Feshbach resonance). When this
is the case, a hot atom will likely collide with remain-
ing (cold) atoms to create other energetic atoms, which
may again collide with others. This chain-collision
mechanism has already been used to explain the en-
hanced trap-loss rate of a high density87Rb conden-
sate [14], and we expect it to play a significant role in
the understanding of collapsing and exploding of85Rb
BEC. Another ingredient that is missing from the ex-
isting theories is the collision between the hot atom
and molecules. From the experimental data [7], it is
clear that the fraction of “missing atoms” can be quite
large. If the hot atoms come primarily from the three-

body recombination processes, this also implies that
the number of molecules can be large. In this case, the
ignorance of atom–molecule collision may again be-
come difficult to justify.

In conclusion, time delay phenomenon in the dy-
namical collapse experiment for85Rb BEC is numeri-
cally studied with mean-field theory. We showed the
delay relies not only on the interaction strength pa-
rameters but also on the initial collective motion of
the condensate before tuning to collapse, the latter of
which has not been discussed in literature. For future
theory on a more realistic modeling of the collapsing
and exploding dynamics, we qualitatively discussed
necessary ingredients. We hope to address these is-
sues and incorporate them into the study of collapse
dynamics in the future.
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