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The effect of an optical plug on the tunable collapse
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Abstract

We propose using the large-detuned optical dipole force as an optical plug to control tunable collapse of Bose–Einstein
condensation with attractive interactions. We show that the optical plug can increase the critical interaction strength while
keeping ground state inter-atomic processes unchanged, and when the plug beam is strong enough, a new type of collapse can
be induced. The phase diagram for these processes is presented with the mean-field analysis and numerical simulation.
 2003 Elsevier Science B.V. All rights reserved.
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Ever since the success of gaseous Bose–Einstein
condensation (BEC) experiments [1,2], far-off-reso-
nance optical dipole force has been widely used in
BEC research, such as helping to produce solitons [3],
rotating condensate to create vortex lattice [4], making
dipole confining [5] or periodical potentials [6], per-
turbing condensate for quasi-particle excitations [7],
as well as splitting [8] and drilling [9] condensate.
In this Letter, we propose a new usage of optical di-
pole force in BEC research, namely, using the far-off-
resonance optical dipole force as an optical plug to
control the collapse.

In trapped Bose–Einstein condensate with attrac-
tive interactions, when the interaction strength exceeds

* Corresponding author.
E-mail address: hxfu@siom.ac.cn (H. Fu).

a certain value, the condensate rapidly contracts [10]
and the particle density at its geometry center rises
up sharply. This collapsing phenomenon has been ob-
served in both experiments of85Rb BEC [11,12] and
mean-field simulations [13]. The rapid growth of the
density enhances loss processes that, after a certain
time of delay, bring atoms out of the condensate and
even kick them off the trap [12]. In other words, when
collapse begins, a singularity appears at the center of
the condensate, at which atoms effectively leak from
the condensate. This picture is very analogous to the
magnetic quadrupole trap, which holds a zero field
point at the center, at which cold atoms escape from
the trap via Majorana transition [14]. Thisleaking at
singularity problem was solved by moving thesingu-
larity off the center to the surrounding so-called “death
circle” [15], or by “plugging” the singularity with a
blue-detuned laser beam [2].
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In this Letter, we suggest using a blue-detuned
Gaussian beam passing through the axis of the conden-
sate as an optical plug to control collapse, and study
the effect of the optical plug on the tunable collapse.
We focus on the static effect caused by this plug, such
as the variation of the critical interaction strength. The
optical plug affects collapse in two aspects: first, since
the optical dipole force can be designed to be inde-
pendent of any sublevel of atoms, and blue-detuned
plug beam will repel atoms out of the center, em-
ploying such a plug will increase the critical inter-
action strength while keeping the magnetic sublevel
structure of atoms unchanged due to far-off-resonance
character, thus it will benefit investigations on col-
lapsing dynamics. In contrast, magnetic methods that
can change the critical interaction strength will also
change the rates of inter-atomic processes, because
those processes are sensitive to magnetic fields. Sec-
ond, the combination of the optical plug with magnetic
harmonic trap will build up adoughnut shape of the
condensate in a certain parametric region, which qual-
itatively changes the showup of the collapse phenom-
enon, as shown in the following.

Our analysis is based on the mean-field theory.
With the advancement of Feshbach resonance tech-
nique [11,16], the scattering length can be prepared
to any value, which facilitates preparing a nearly pure
condensate. Thus the Gross–Pitaevskii equation
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with the composite potential

V (ρ, z) = Vtrap(ρ, z) + Vppt(ρ)
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,

can be safely applied in this context [17], where
Vtrap is the harmonic trap andVopt represents the
potential of the Gaussian beam that passes through the
condensate axis and acts as the optical plug, withA the
dipole force strength andw the beam width. In Eq. (1)
we have scaled length byL0 = √

h̄/2mω⊥ and energy
by h̄ω⊥, whereω⊥ is the radial trapping frequency of
the harmonic trap andε the aspect ratio.

When the laser beam is absent, the attractive inter-
action strength(g = 8πN |a|/L0) has a critical value
gcr, beyond which the condensate would collapse [12].

After the plug beam is switched on, since the blue-
detuned laser drives atoms off the center against the
attractive interaction and the trap, the critical constant
should be shifted to higher values which depends on
the parameters of the beam. These values are deter-
mined with numerical solution of Eq. (1). We use
the finite difference scheme of ADI algorithm [18].
When g < gcr, the ground state of Eq. (1) can be
achieved with the imaginary time propagation method.
If g > gcr, the normalization constant during iteration
diverges. We check every critical value for enough
long numerical time (typically over 10 000× 0.005).
WhenA = 0, our codes reproduce results reported in
Ref. [19] satisfactorily.

The resulting critical values ofg versusA are
presented as curve a of Fig. 1. These points are
obtained with imaginary time propagation starting
from Gaussian function. As expected, exerted dipole
force significantly liftsgcr up, andgcr monotonically
increases with the dipole strengthA. This can be
understood since when the central barrier grows as
the dipole strength tuned up, atoms have to gain
more attractive interaction to surmount the barrier.
Therefore, with this method, the allowed mean-field
interaction strength can be made strong enough, which
benefits the investigations on the collapsing dynamics
after the beam is switched off.

Fig. 1. The phase diagram for the effect of the optical plug on the
collapse. Curve a (solid squares with line): the critical interaction
strength forcentral collapse; curve b (empty circle with line):
separatrix between Gaussian-like shape and doughnut shape of the
condensate; curve c (solid triangles with line): the critical interaction
strength for collapse of states of doughnut shape in parameter
region III. The beam width is fixed tow = √

3.0.



H. Fu et al. / Physics Letters A 308 (2003) 471–475 473

The result of curve a in Fig. 1 depends on the
presumption that the ground state wave function is
of Gaussian shape. But in fact, whenA is large
enough, the ground state wave function should show
up a doughnut shape. The critical values of interac-
tion strength for transition from Gaussian to doughnut
shape vary with differentA. We determined this sepa-
ratrix in gcr–A region by finding where the maximum
density locates. One such curve is shown in Fig. 1 as
curve b. Left to this separatrix is the region where the
peak locates at the geometry center, and right to it is
where the condensate density distribution develops a
dip through the center and shows a doughnut shape.

The emergence of the doughnut structure signifi-
cantly affects the collapse process. Consider a realis-
tic situation. At first, the condensate is prepared into
the doughnut shape with repulsive interaction. At the
beginning time for collapsing, the scattering length is
switched to a large negative value, and the conden-
sate would contract due to the attractive interaction.
However, if the laser beam strengthA is large enough,
it is so time-consuming for the condensate atoms to
surmount the optical plug barrier, that condensate can
collect sufficiently high density around every site on
the torus before atoms tunneling through the barrier. In
this case, collapse will happen first on the torus. This
torus collapse is topologically different from those
previously studiedcentral collapse. For the latter, the
condensate flows into the “black hole” and the sin-
gularity is a singular point. While for here presented
case, the collapse happens on an torus and the whole
condensate should shrink to a “super string” with in-
finitesimal width, if no loss mechanism is taken into
account.

Since the Gaussian beam alters the trap, the ef-
fective trapping frequency along the torus is different
from the global trapping parameters. Therefore, the
critical value of the interaction strength for the torus
collapse should be different from the central collapse.
This inference is supported by our simulation. As an
example, forw = √

3, the critical valuesgcr for the
torus collapse are shown in Fig. 1 as curve c. This
curve, together with that for central collapse (curve a)
and the Gaussian-doughnut separatrix (curve b) di-
vides thegcr–A plane into fourphases. In phase I
the ground state is Gaussian and stable. In phase II,
the numerical simulation produces the doughnut shape
of the steady state. In phase III, the ground state is

also of doughnut shape. However, states in this phase
cannot be reached with the imaginary time evolution
starting from Gaussian shape: those states will col-
lapse into the central singularity instead of converg-
ing to doughnut shape. In our simulation, we have
to prepare the condensate into the doughnut first and
then switched the interaction strength to the predeter-
mined value and evolve the condensate to convergence
in imaginary time. States in phase IV is unconditional
unstable: condensates in this parametric region will in-
evitably collapse.

The division of the parametric plane ofgcr–A

into four phases causes important effects. First, the
collapse not only relies on the parameters but also
on the initial shape of the condensate. Second, the
tuning route of the parameters (including the direction
of tuning) also affects the collapse phenomenon.
For example, tuning down the dipole strengthA
from phase II to phase III will lead the condensate
to collapse, while the inverse tuning only results
in shape oscillation. Third, the emergence of the
torus collapse has physical significance. In reality,
the collapse is stopped with the emerging of thermal
atoms and molecules. In previous experiments [12] or
numerical simulations [13], these products are burst
mostly from the vicinity of the origin. In contrast,
torus collapse will cause condensate lose components
everywhere around the torus, which shall exhibit
interesting dynamical phenomena.

Two remarks should be made at this stage. First,
when the plug beam is too strong, it will be very
difficult for the occurrence of the central collapse.
Because if the plug is too strong, condensate has
no time to gain enough density at the center before
atoms slide into the toroidal dip surrounding the plug.
As a consequence, atoms are amassed locally and
exceeds the critical particle number for torus collapse.
Therefore, curve a in Fig. 1 cannot be extended
infinitely and phase III will be narrower with the
increase ofA. Second, additional caution ought to
be given to the precision ofgcr. During simulation,
if the starting point of the imaginary evolution is far
from the target point in the parametric space, one
may adiabatically increaseg to gcr. However, asg
approachesgcr, the energy surface becomes more and
more flat. In this case, a static “collapsing” state can
be quasi-stable: numerical fluctuations may not be
able to boost it to the singularity in a short time,
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and one will have to wait for enough long time to
see the collapse if it in principle should occur, which
causes practical inconvenience. On the contrary, if one
nonadiabatically tunes parameters, the condensate will
gain extra artificial energy to surmount the energy
barrier produced by the zero-point quantum motion,
even though at this timeg is still smaller than the
real gcr. Thus the boundary between collapse and
metastability is blurred. We overcome this difficulty
by combining nonadiabatical tuning with adiabatic
tuning: we first use the former to search approximate
gcr and then use the latter to check it for sufficiently
long numerical time. However, this methodology is
not suitable to the part of curve a between phase II
and phase III, where only nonadiabatic method is
used instead, because when the interaction strength is
adiabatically tuned up, states with parameters adjacent
to those collapsing points will cross over curve a and
transit to phase III.

In the above analysis, the width of the plug beam
is fixed. The role of the beam width can be seen from
the composite trap of the harmonic plus the Gaussian
plug. For example, the section of the composite trap
profile along one of the radial axes is demonstrated
in Fig. 2(a). If w is very small, the plug acts just
like a perturbing spike centered at the harmonic trap,
and the collapse will not be changed much. Withw

increasing, the dip around the origin shifts out and
lifts up, and the barrier around the origin begins to
play role. Thus the critical interaction strength should
increase. If the beam is too wide, the composite trap
is nothing else but a shift-up harmonic-like trap, hence
in this casegcr shall not change much comparing with
that without the plug. This analysis is reflected in
Fig. 2(b) of gcr versusw. For a certain value ofA,
the maximum ofgcr is achieved with moderate beam
width.

In conclusion, we propose a novel method of
using the large-detuned optical dipole force to control
collapse. The blue-detuned optical plug dramatically
changes the collapse in two ways. First, it increases
the critical value of the interaction strength for the
collapsing happened at the center. Second, the plug
brings forth a new type of collapse, namely, the torus
collapse, which occurs on the torus of the doughnut
shape of the condensate. The laser power needed for
this purpose is small. For example, for the85Rb BEC
system at JILA, if 532 nm laser is used as the plug

beam, only several µW is sufficient, which can be
conveniently achieved and adjusted in the laboratory.

In this Letter, we present the phase diagram with
mean-field analysis and numerical simulation. In prac-
tise, introducing Gaussian plug changes the trap struc-
ture, which shall induce not merely mean-field ef-
fects (such as shape oscillations) but also quantum
processes, in particular, quantum tunneling is pre-
dicted to play active roles. Besides, the process of los-
ing condensate atoms during implosion should also ex-
hibit itself in manners different from what have been
experimentally observed. We emphasize that optical
plug not only is a complement and convenient control

Fig. 2. Effect of the variation of the Gaussian plug beam width.
(a) Section along theX axis of the composite potentialV (x,y, z)

composed of the harmonic trap and the optical plug with different
widths w = √

30,
√

3,
√

0.03, from top to bottom, respectively.
(b) The critical interaction strengthgcr versus the beam widthw.
The dipole force strength is fixed toA = 4.0.
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methods for collapse, it will also induce many inter-
esting phenomena which deserve further studies.
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