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We present a multichannel quantum-defect theory for slow atomic collisions that takes advantages of the
analytic solutions for the long-range potential and both the energy and angular momentum insensitivities of the
short-range parameters. The theory provides an accurate and complete account of scattering processes, includ-
ing shape and Feshbach resonances, in terms of a few parameters such as the singlet and triplet scattering
lengths. As an example, results for 23Na- 23Na scattering are presented and compared to close-coupling
calculations.
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I. INTRODUCTION

Slow atomic collisions are at the very foundation of cold-
atom physics, since they determine how atoms interact with
each other and how this interaction might be manipulated
�1,2�. While substantial progress has been made over the past
decade �3�, there are still areas where the existing theoretical
framework is less than optimal. For example, all existing
numerical methods may have difficulty with numerical sta-
bility in treating ultracold collisions in partial waves other
than the s wave, because the classically forbidden region
grows infinitely wide as one approaches the threshold. This
difficulty becomes a serious issue when there is a shape reso-
nance right at or very close to the threshold, as the usual
argument that the s-wave scattering dominates would no
longer be applicable. Another area where a more optimal
formulation is desirable is analytic representation. Since
much of our interest in cold atoms is in complex three-body
and many-body physics, a simple, preferably analytical rep-
resentation of cold collisions would not only be very helpful
to experimentalists, but also make it much easier to incorpo-
rate accurate two-body physics in theories for three- and
many-atom systems. Existing formulations of cold collisions
provide little analytical results especially in cases, such as
the alkali-metal atoms, where the atomic interaction is com-
plicated by hyperfine structures. Furthermore, whatever ana-
lytic results that we do have have been based almost exclu-
sively on the effective-range theory �4�, the applicability of
which is severely limited by the long-range atomic interac-
tion �5,6�.

Built upon existing multichannel quantum-defect theories
that are based either on free-particle reference functions or
on numerical solutions for the long-range potential �7–12�,
we present here a multichannel, angular-momentum-
insensitive, quantum-defect theory �MAQDT� that over-
comes many of the limitations of existing formulations. It is
a generalization of its single-channel counterpart �13–15�
and takes full advantage of both the analytic solutions for the

long-range potential �16,17� and the angular momentum in-
sensitivity of a properly defined short-range K matrix Kc

�13,15�. We show that as far as Kc is concerned, the hyper-
fine interaction can be ignored and the frame transformation
�9,10,18–20� applies basically exactly. This conclusion
greatly simplifies the description of any atomic collision that
involves hyperfine structures. In the case of a collision be-
tween any two alkali-metal atoms in their ground state,
whether they are identical or not, it reduces a complex mul-
tichannel problem to two single-channel problems. This
property, along with the energy and angular momentum in-
sensitivity of Kc �13,15�, leads to an accurate and complete
characterization of slow collisions between any two alkali-
metal atoms, including shape resonances, Feshbach reso-
nances, and practically all partial waves of interest, and over
an energy range of hundreds of millikelvins, by four param-
eters for atoms with identical nuclei, and five parameters for
different atoms or different isotopes of the same atom. To be
more specific, the four parameters can be taken as the singlet
s-wave scattering length a0S, the triplet s-wave scattering
length a0T, the C6 coefficient for the long-range van der
Waals potential −C6 /r6, and the atomic hyperfine splitting
�Ea

HF �the reduced mass �, which is also needed, is not
counted as a parameter since it is always fixed and well
known�. For different atoms or different isotopes of the same
atom, we need another hyperfine splitting for a total of five
parameters. These results also prepare us for future analytic
representations of multichannel cold collisions, when we re-
strict ourselves to a smaller range of energies.

II. MAQDT

An N-channel, two-body problem can generally be de-
scribed by a set of wave functions

� j = �
i=1

N

�iFij�r�/r . �1�

Here �i are the channel functions describing all degrees of
freedom other than the interparticle distance r and Fij�r� sat-
isfies a set of close-coupling equations
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�−
�2

2�

d2

dr2 +
�2li�li + 1�

2�r2 − E�Fij + �
j=1

N

Vij�r�Fij = 0, �2�

where � is the reduced mass, li is the relative angular mo-
mentum in channel i, E is the total energy, and Vij is the
representation of the interparticle potential in the set of cho-
sen channels �see, e.g., Ref. �9� for a diatomic system with
hyperfine structures�.

Consider now a class of problems for which the potential
at large distances �r�r0� is of the form of

Vij�r� = �Ei − Cni
/rni��ij , �3�

in the fragmentation channels that diagonalize the long-range
interactions. Here ni	2 and Ei is the threshold energy asso-
ciated with a fragmentation channel i. As an example, for the
scattering of two alkali-metal atoms in their ground state, the
fragmentation channels in the absence of any external mag-
netic field are characterized by the FF coupling of reference
�9�, differences in threshold energies originate from atom
hyperfine interaction, ni=6 corresponds to the van der Waals
interaction, and r0, with an order of magnitude around
30 a.u., corresponds to the range of exchange interaction.

Before enforcing the physical boundary condition
�namely, the condition that a wave function has to be finite
everywhere� at infinity, Eq. �2� has N linearly independent
solutions that satisfy the boundary conditions at the origin.
For r�r0, one set of these solutions can be written as

� j
c = �

i=1

N

�i�f i
c�ij − gi

cKij
c �/r . �4�

Here f i
c and gi

c are the reference functions for the long-range
potential −Cni

/rni in channel i at energy 
i=E−Ei. They are
chosen such that they are independent of both the channel
kinetic energy 
i and the relative angular momentum li at
distances much smaller than the length scale �ni
= �2�Cni

/�2�1/�ni−2� associated with the long-range interaction
�see Appendix A and Refs. �13,15��.

Equation �4� defines the short-range K matrix Kc. It has a
dimension equal to the total number of channels, N, and
encapsulates all the short-range physics. The Kc matrix can
either be obtained from numerical calculations �see Appen-
dix B� or be inferred from other physical quantities such as
the singlet and triplet scattering lengths, as discussed later in
the article.

At energies where all N channels are open, the solutions
given by Eq. �4� already satisfy the physical boundary con-
ditions at infinity. Using the asymptotic behaviors of refer-
ence functions fc and gc at large r �see Appendix A and Ref.
�16��, it is easy to show from Eq. �4� that the physical K
matrix, defined by Eqs. �4� and �5� of Ref. �9�, is an N�N
matrix given in terms of Kc by

K�E� = − �Zfg
c − Zgg

c Kc��Zf f
c − Zgf

c Kc�−1. �5�

Here Zfg
c , Zgg

c , Zf f
c , and Zgf

c are N�N diagonal matrices with
diagonal elements given by Zfg

c�ni��
i , li�, Zgg
c�ni��
i , li�,

Zf f
c�ni��
i , li�, and Zgf

c�ni��
i , li�, respectively �see Appendix A
and Refs. �14,16��. Equation �5� is of the same form as its

single-channel counterpart �13,14�, except that the relevant
quantities are now matrices and Kc is generally not diagonal.

At energies where No of the channels are open �
i	0, for
i�o� and Nc=N−No of the channels are closed �
i
0, for
i�c�, the physical boundary conditions at infinity lead to Nc
conditions that reduce that number of linearly independent
solutions to No �9,10,21�. The asymptotic behavior of these
No solutions gives the No�No physical K matrix

K�E� = − �Zfg
c − Zgg

c Kef f
c ��Zf f

c − Zgf
c Kef f

c �−1. �6�

Here Zfg
c , Zgg

c , Zf f
c , and Zgf

c are No�No diagonal matrices with
diagonal elements given by the corresponding Zc matrix el-
ement for all open channels, and we have defined the effec-
tive Kc matrix for the open channels, Kef f

c , to be

Kef f
c = Koo

c + Koc
c ��c − Kcc

c �−1Kco
c . �7�

Here �c is an Nc�Nc diagonal matrix with elements
�c�ni��
i , li� �see Appendix A and Refs. �13,16�� for all closed
channels. Koo

c , Koc
c , Kco

c , and Kcc
c are submatrices of Kc cor-

responding to open-open, open-closed, closed-open, and
closed-closed channels, respectively.

All on-the-energy-shell scattering properties can be de-
rived from the physical K matrix. In particular, the physical S
matrix is given by �9�

S�E� = �I + iK�E���I − iK�E��−1, �8�

where I represents a unit matrix. From the S matrix, the
scattering amplitudes, the differential cross sections, and
other physical observables associated with scattering can be
easily deduced �9�.

It is worth noting that Eq. �6� preserves the form of Eq.
�5�. Thus the effect of closed channels is simply to introduce
an energy dependence, through �c, into the effective Kc ma-
trix Kef f

c for the open channels. In particular, the bare �un-
shifted� locations of Feshbach resonances, if there are any,
are determined by the solutions of

det��c�E� − Kcc
c � = 0. �9�

They are locations of would-be bound states if the closed
channels are not coupled to the open channels. The same
equation also gives the bound spectrum of true bound states
at energies where all channels are closed.

This completes our summary of MAQDT. It is completely
rigorous with no approximations involved. The theory is eas-
ily incorporated into any numerical calculations �see Appen-
dix B�. The difference from the standard approach is that one
matches the numerical wave function to the solutions of the
long-range potential to extract Kc, instead of matching to the
free-particle solutions to extract K directly. This procedure
converges at a much smaller r=r0, the range of the exchange
interaction, than methods that match to the free-particle so-
lutions. Furthermore, since the propagation of the wave func-
tion from r0 to infinity is done analytically, through the Zc

matrix for open channels and the �c function for closed chan-
nels, there is no difficulty in treating shape resonances right
at or very close to the threshold. This improved convergence
and stability does not, however, fully illustrate the power of
MAQDT formulation and is not the focus of this article.
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Instead, we focus here on the simple parametrization of slow
atomic collisions with hyperfine structures made possible by
MAQDT. The result also lays the ground work for future
analytic representations of cold collisions.

III. SIMPLIFIED PARAMETRIZATION WITH A FRAME
TRANSFORMATION

Equations �5�–�7� and �9� already provide a parametriza-
tion of slow-atom collisions and diatomic bound spectra in
terms of the elements of the Kc matrix. For alkali-metal at-
oms in their ground state, where the multichannel nature
arises from the hyperfine interaction, or a combination of
hyperfine and Zeeman interactions for scattering in a mag-
netic field, this parametrization can be simplified much fur-
ther by taking advantage of a frame transformation
�9,10,18–20�.

At energies comparable to, or smaller than, the atomic
hyperfine and/or Zeeman splitting, one faces the dichotomy
that the hyperfine and/or Zeeman interaction, while weak
compared to the typical atomic interaction energy, is suffi-
ciently strong that the physical K matrix changes signifi-
cantly over a hyperfine splitting. �This is reflected in the very
existence of Feshbach resonances �1,2� and states with bind-
ing energies comparable to or smaller than the hyperfine
splitting.� As a result, the frame transformation does not ap-
ply directly to the physical K matrix itself and is generally a
bad approximation even for the K0 matrix of Ref. �9�. It was
this recognition that first motivated the solutions for the
long-range potentials �16,17�.

This dichotomy is easily and automatically resolved with
the introduction of the short-range K matrix Kc. The solution
is simply to ignore the hyperfine and/or Zeeman interaction
only at small distances and treat it exactly at large distances.
For r
r0, the atomic interaction is of the order of the typical
electronic energy. Thus, as far as Kc, which converges at r0,
is concerned, the hyperfine and/or Zeeman interaction can be
safely ignored. In this approximation, the Kc matrix in the
fragmentation channels can be obtained from the Kc matrix
in the condensation channels—namely, the channels that di-
agonalize the short-range interactions—by a frame transfor-
mation.

For simplicity, we restrict ourselves here to the case of
zero external magnetic field, although the theory can readily
be generalized to include a magnetic field. The fragmentation
channels are the FF coupled channels characterized by quan-
tum numbers �9�

��1L1S1J1I1F1�A��2L2S2J2I2F2�BFlTMT,

where F results from the coupling of F1 and F2; l is the
relative orbital angular momentum of the center-of-masses of
the two atoms. T represents the total angular momentum, and
MT is its projection on a space-fixed axis �9�.

Provided that the off-diagonal second-order spin-orbital
coupling �22� can be ignored, a good approximation for
lighter alkali-metal atoms, or more generally, for any physi-
cal processes that are allowed by the exchange interaction,
the condensation channels can be taken as the LS coupled
channels characterized by quantum numbers �9�

��1L1S1I1�A��2L2S2I2�BLlLSKITMT,

where L=L+ l is the total orbital angular momentum. S
=S1+S2 is the total electron spin. I=I1+I2 is the total
nuclear spin. And K=L+S is the total angular momentum
excluding nuclear spin.

Ignoring hyperfine interactions, as argued earlier, the Kc

matrix in FF-coupled channels, labeled by index i or j, is
related to the Kc matrix in LS-coupled channels, labeled by
index � or �, by a frame transformation �9�:

Kij
c = �

��

Ui�K��
c�LS�Uj�, �10�

where Kc�LS� is the Kc matrix computed in the LS coupling
with the hyperfine interactions ignored. The most general
form of frame transformation Uj� is given by Eq. �49� of
Ref. �9�. For collisions between any two atoms with zero
orbital angular momentum L1=L2=L=0, including of course
any two alkali-metal atoms in their ground states, the frame
transformation simplifies to

Ui��T� = �lil�
�− 1�Fi+S�+I��F1i,F2i,Fi,S�,K�,I��1/2

� � Fi li T

K� I� S�
	
 S1 S2 S�

I1 I2 I�

F1i F2i Fi
� , �11�

for atoms with different nuclei. Here �a ,b , . . . �
��2a+1��2b+1�¯. For two atoms with identical nuclei, the
same transformation needs to be multiplied by a normaliza-
tion factor �9�:

U
i�
�� = 
1 + ���2L2S2,�1L1S1��1 − ��J2iF2i,J1iF1i���1/2

� Ui�. �12�

We emphasize that to the degree that the hyperfine inter-
action in a slow atomic collision can be approximated by
atomic hyperfine interactions, as has always been assumed
�2�, the frame transformation given by Eq. �10� should be
regarded as exact. If the hyperfine interaction inside r0, the
range of the exchange interaction, cannot be ignored, the true
molecular hyperfine interaction �23� would have to be used.
Inclusion of atomic hyperfine interactions inside r0 is simply
another approximation, and an unnecessary complication,
which is of the same order of accuracy as ignoring it com-
pletely. In other words, any real improvement over the frame
transformation has to require a better treatment of molecular
hyperfine interactions �23�. A similar statement is also appli-
cable to the Zeeman interaction.

The applicability of the frame transformation greatly sim-
plifies the description of any slow atomic collision with hy-
perfine structures. For alkali-metal atoms in their ground
state and ignoring off-diagonal second-order spin-orbital
coupling �22�, it reduces a complex multichannel problem to
two single-channel problems, one for the singlet S=0 and
one for the triplet S=1, with their respective single-channel
Kc �13,14� denoted by KS

c�
 , li� and KT
c�
 , li�, respectively.

The Kc matrix in the LS coupling, Kc�LS�, is diagonal with
diagonal elements given by either KS

c or KT
c �9�. Ignoring the

energy and the angular momentum dependences of KS
c�
 , li�
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and KT
c�
 , li� �13,15�, they become simply two parameters

KS
c =KS

c�0,0� and KT
c =KT

c�0,0�, which are related to the sin-
glet and triplet s-wave scattering lengths by �24�

a0/�n = �b2b��1 − b�
��1 + b��Kc�0,0� + tan��b/2�

Kc�0,0� − tan��b/2�
, �13�

where b=1/ �n−2� with n=6 for alkali-metal scattering in
the ground state. With Kc�LS�, and therefore Kc, being param-
etrized by two parameters, a complete parametrization of
alkali-metal scattering requires only two, or three, more pa-
rameters including C6, which determined the length and en-
ergy scales for the long-range interaction, and the atomic
hyperfine splitting �Ea

HF, which characterizes the strength of
atomic hyperfine interaction and also determines the channel
energies.

We note here that our formulation ignores the weak mag-
netic dipole-dipole interaction �22,25�. It is important only
for processes, such as the dipolar relaxation, that are not
allowed by the exchange interaction. Such processes can be
incorporated perturbatively after a MAQDT treatment �11�.
We also note that for processes, such as the spin relaxation of
Cs, for which the off-diagonal second-order spin-orbital cou-
pling is important �22,26�, a different choice of condensation
channels, similar to the JJ-coupled channels of Ref. �9�,
would be required. The resulting description is similar con-
ceptually, but involves more parameters �22,26�.

IV. SAMPLE RESULTS FOR SODIUM-SODIUM
SCATTERING

As an example, Figs. 1–3 show the comparison between
close-coupling calculations and a four-parameter MAQDT
parametrization for slow atomic collisions between a pair of
23Na atoms in the absence of external magnetic field. The
points are the close-coupling results using the potentials of
Refs. �27,28�. The curves represent the results of a four-
parameter parametrization with a0S=19.69 a.u., a0T

=64.57 a.u., C6=1556 a.u. �29�, and �Ea
HF=1772 MHz,

where a0S and a0T are computed from the singlet and triplet
potentials of Refs. �27,28�. Figure 1 shows the S-matrix ele-
ment for the s-wave elastic scattering in channel �
F1
=1 ,F2=1�F=0, l=0,T=0�. The feature around 130 mK is a
Feshbach resonance in channel �
F1=2 ,F2=2�F=0, l=0,T
=0�. For this particular case, Kc�LS� is a 2�2 matrix:

Kc�LS� = �KS
c 0

0 KT
c � , �14�

with channel ordering shown in Table I. KS
c and KT

c are re-
lated to the singlet and triplet scattering lengths by Eq. �13�.
The frame transformation is given by �cf. Eqs. �11� and �12��

U�T = 0� =
1

2�2
��3 �5

�5 − �3
� , �15�

which leads to

FIG. 1. �Sii−1�2, where Sii is an S-matrix ele-
ment, for the s-wave elastic scattering of two
23Na atoms in channel �
F1=1,F2=1�F=0, l
=0,T=0�, as a function of E /kB, where kB is the
Boltzmann constant. The vertical lines identify
the locations of thresholds for 
F1=1,F2=2� and

F1=2,F2=2� channels. Solid line: results of a
four-parameter MAQDT parametrization. Points:
results of close-coupling calculations.

FIG. 2. The same as Fig. 1 except for d-wave channel �
F1

=1,F2=1�F=2, l=2,T=2�.
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Kc =
1

8
� 3KS

c + 5KT
c �15�KS

c − KT
c�

�15�KS
c − KT

c� 5KS
c + 3KT

c � . �16�

From the Kc matrix, the S matrix is obtained from the
MAQDT equations �5�–�8�. Note how Eq. �16� shows explic-
itly that the off-diagonal element of Kc, which determines the
rate of inelastic collision due to exchange interaction, goes to
zero for KS

c =KT
c—namely, when a0S=a0T.

The results presented in Figs. 2 and 3 are obtained in
similar fashion. Figure 2 shows the S-matrix element for the
d-wave elastic scattering in channel �
F1=1 ,F2=1�F=2, l
=2,T=2�. It illustrates how the same parameters that we use
to describe the s-wave scattering also describe the d-wave
scattering, due to the fact that KS

c and KT
c are insensitive to l

�13,15�. Here the sharp features around the thresholds are
d-wave shape resonances. Figure 3 shows the S-matrix ele-
ment for the s-wave inelastic scattering between channel
�
F1=1 ,F2=1�F=2, l=0,T=2� and channel �
F1=1 ,F2

=2�F=2, l=0,T=2�. The kinks �discontinuities in the de-
rivative�, in both Figs. 3 and 1 at the 
F1=2 ,F2=2� thresh-

old, are general features associated with the opening of an
s-wave channel. There is no kink at the 
F1=1 ,F2=2�
threshold in Fig. 1 because the �
F1=1 ,F2=1�F=0, l=0,T
=0� channel is not coupled to 
F1=1 ,F2=2� channels.

The agreements between the MAQDT parametrization
and close-coupling calculations are excellent, exact for all
practical purposes, in all cases. Conceptually, these results
illustrate that through a proper MAQDT formulation, colli-
sions of alkali-metal atoms over a wide range of energies
�300 mK compared to the Doppler cooling limit of about
0.2 mK for 23Na�, with complex structures including Fesh-
bach and shape resonances and for different partial waves,
can all be described by parameters that we often associate
with the s-wave scattering at zero energy only—namely, the
singlet and triplet scattering lengths. More generally, since
the parameter that determines the energy variation of Kc

around the threshold, �8 /�6, seems to have the same order of
magnitude of around 1/2, or smaller, for all atoms, the same
statement is expected to be applicable, over an energy range
of hundreds to thousands of ��2 /2���1/�6�2, to all atomic
collisions with long-range interactions characterized by Eq.
�3� with ni=6. The theory can also be easily generalized to
cover an even greater range of energies by incorporating the
energy dependence of Kc into the parametrization.

V. CONCLUSION

In conclusion, a multichannel, angular-momentum-
insensitive, quantum-defect theory for slow atomic collisions
has been presented. We believe it to be the optimal formula-
tion for purposes including exact numerical calculation, pa-
rametrization, and analytic representation. We have shown
that by dealing with the short-range K matrix Kc, the frame
transformation becomes basically exact, which greatly sim-
plifies the description of any slow atomic collision with hy-
perfine structures. As an example, we have shown that even
a simplest parametrization with four parameters, in which the
energy and the l dependence of KS

c and KT
c are completely

ignored, reproduces the close-coupling calculations for 23Na
atoms over a wide range of energies basically exactly. The
effect of an external magnetic field, which is not considered
in this article, is easily incorporated as it simply requires
another frame transformation �10�.

The concepts and main constructs of the theory can be
generalized to other scattering processes including ion-atom
scattering and atom-atom scattering in excited states. The
key difference will be in the long-range interaction �cf. Eq.
�3��. In addition to possibly different long-range exponent ni
�such as ni=4 for ion-atom scattering�, there may also be
long-range off-diagonal coupling that will have to be treated
differently.

Finally, we expect that if we restrict ourselves to a smaller
range of energies, of the order of ��2 /2���1/�6�2 �about
1 mK for 23Na�, a number of analytic results, similar to the
single-channel results of Refs. �5,6�, can be derived even for
the complex multichannel problem of alkali-metal collisions.
These results may, in particular, lead to a more general and
more rigorous parametrization of magnetic Feshbach reso-

FIG. 3. The S-matrix element �Sij�2 for the s-wave inelastic scat-
tering of two 23Na atoms between channels �
F1=1,F2=1�F=2, l
=0,T=2� and �
F1=1,F2=2�F=2, l=0,T=2�.

TABLE I. Channel structure for s-wave scattering between two
identical atoms with L1=L2=0, S1=S2=1/2, and I1= I2=3/2, in the
absence of an external magnetic field. Examples include 7Li, 23Na,
39K, and 87Rb.

T LS coupling �S , I� FF coupling 
F1 ,F2�F

0 S=0, I=0 
1,1�0
S=1, I=1 
2,2�0

1 S=1, I=1 
1,2�1
2 S=0, I=2 
1,1�2

S=1, I=1 
1,2�2
S=1, I=3 
2,2�2

3 S=1, I=3 
1,2�3
4 S=1, I=3 
2,2�4
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nances �see, e.g., Refs. �12,30� for some recent works in this
area�.
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APPENDIX A: DEFINITIONS OF MAQDT FUNCTIONS

The reference functions fc and gc for a −Cn /rn �n	2�
potential are a pair of linearly independent solutions of the
radial Schrödinger equation

�−
�2

2�

d2

dr2 +
�2l�l + 1�

2�r2 −
Cn

rn − 
�u
l�r� = 0, �A1�

which can be written in a dimensionless form as

� d2

drs
2 −

l�l + 1�
rs

2 +
1

rs
n + 
s�u
sl

�rs� = 0, �A2�

where rs=r /�n is a scaled radius, �n��2�Cn /�2�1/�n−2� is the
length scale associated with the −Cn /rn interaction, and


s =



��2/2���1/�n�2 , �A3�

is a scaled energy.
The fc and gc pair are chosen such that they have not

only energy-independent, but also angular-momentum-
independent behaviors in the region of r��n �namely, rs
�1�:

f
sl
c �rs�˜

rs�1

�2/��1/2rs
n/4 cos�y − �/4� , �A4�

g
sl
c �rs�˜

rs�1

− �2/��1/2rs
n/4 sin�y − �/4� , �A5�

for all energies �13,24�. Here y= �2/ �n−2��rs
−�n−2�/2. They are

normalized such that

W�fc,gc� � fcdgc

drs
−

dfc

drs
gc = 2/� . �A6�

For 
=0, the fc and gc pair for arbitrary n can be found in
Ref. �15�. For 
�0, the fc and gc pair for n=6 can be found
in Ref. �31�. The are related to the f0 and g0 pair of Ref. �16�
by

� fc

gc � =
1
�2

� cos���0/2� sin���0/2�
− sin���0/2� cos���0/2�

��1 0

0 − 1
�� f0

g0 � ,

�A7�

where �0= �2l+1� /4 for n=6.
The Zc�n��
s , l� matrix is defined by the large-r asymptotic

behaviors of fc and gc for 
	0,

f
sl
c �rs�˜

r→�� 2

�ks
�Zf f

c�n��
s,l�sin�ksrs −
l�

2
�

− Zfg
c�n��
s,l�cos�ksrs −

l�

2
�� , �A8�

g
sl
c �rs�˜

r→�� 2

�ks
�Zgf

c�n��
s,l�sin�ksrs −
l�

2
�

− Zgg
c�n��
s,l�cos�ksrs −

l�

2
�� , �A9�

where ks=k�n with k= �2�
 /�2�1/2. This defines a
2�2 Zc�n��
s , l� matrix

Zc�n� = �Zf f
c�n� Zfg

c�n�

Zgf
c�n� Zgg

c�n� � . �A10�

It is normalized such that

det�Zc�n�� = Zf f
c�n�Zgg

c�n� − Zgf
c�n�Zfg

c�n� = 1. �A11�

The �l
c�n��
s� function is defined through the large-r

asymptotic behaviors of fc and gc for 

0:

f
sl
c �rs�˜

r→�

�2��s�−1/2�Wf−
c�n��
s,l�e�srs − Wf+

c�n��
s,l��2e−�srs�� ,

�A12�

g
sl
c �rs�˜

r→�

�2��s�−1/2�Wg−
c�n��
s,l�e�srs − Wg+

c�n��
s,l��2e−�srs�� ,

�A13�

where �s=��n with �= �2��
 � /�2�1/2. This defines a 2
�2 Wc�n��
s , l� matrix

Wc�n� = �Wf−
c�n� Wf+

c�n�

Wg−
c�n� Wg+

c�n� � , �A14�

from which the �l
c�n��
s� function is defined by

�l
c�n��
s� = Wf−

c�n�/Wg−
c�n�. �A15�

The Wc�n� matrix is normalized such that

det�Wc�n�� = Wf−
c�n�Wg+

c�n� − Wg−
c�n�Wf+

c�n� = 1. �A16�

The Zc�n��
s , l� and Wc�n��
s , l� matrices, for 
	0 and 


0, respectively, describe the propagation of a wave func-
tion in a −Cn /rn potential from small to large distances or
vice versa. They are universal functions of the scaled energy

s with their functional forms determined only by the expo-
nent n of the long-range potential and the l quantum number.
The Cn coefficient and the reduced mass play a role only in
determining the length and energy scales.

The Zc�n� matrix for n=6 is given in Ref. �14�. The
�l

c�n��
s� function for n=6 is given in Ref. �13�. They are
derived from Eq. �A7� and the asymptotic behaviors of the f0

and g0 pair given in Ref. �16�.

APPENDIX B: Kc FROM NUMERICAL SOLUTIONS

Let F�r� be the matrix, with elements Fij�r�, representing
any N linearly independent solutions of the close-coupling
equation and F��r� be its corresponding derivative �Each col-
umn of F�r� corresponds to one solution through Eq. �1�.�
For r�r0, F can always be written as
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F�r� = fc�r�A − gc�r�B , �B1�

where fc�r� and gc�r� are N�N diagonal matrices with diag-
onal elements given by f i

c�r� and gi
c�r�, respectively. The ma-

trices A and B can be obtained, e.g., from knowing F�r� and
F��r� at one particular r�r0. Specifically,

A = ���n/2��gc��r�F�r� − gc�r�F��r�� , �B2�

B = ���n/2��fc��r�F�r� − fc�r�F��r�� . �B3�

Comparing Eq. �B1� with Eq. �4� gives

Kc = �fc��r�F�r� − fc�r�F��r���gc��r�F�r� − gc�r�F��r��−1.

�B4�

In an actual numerical calculation, which can be imple-
mented using a number of different methods �32�, the right-
hand side �RHS� of this equation is evaluated at progres-
sively greater r until Kc converges to a constant matrix to a
desired accuracy. This procedure also provides a numerical
definition of r0; namely, it is the radius at which the RHS of
Eq. �B4� becomes an r-independent constant matrix.
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