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I. INTRODUCTION

Through the works of many people, such as Seaton, Fano,
and Greene, the quantum-defect theory �QDT� for −1 /r�

type of potentials with ��2 has been well established as a
powerful conceptual and computational tool for all physical
processes that are governed by such long-range interactions
�1–5�. The same cannot yet be said, however, about the QDT
for interactions with ��2, despite many important indi-
vidual advances �6–15�, especially since the emergence of
cold-atom physics �16–29�. The reason is an intertwining
combination of conceptual, mathematical, and computational
difficulties.

As an example of the mathematical and related computa-
tional difficulties, consider the case of a polarization poten-
tial of the type of −1 /r4 that plays an important role in our
understanding of electron-atom and ion-atom interactions. It
has been known for years �6,30� that solutions for this po-
tential are given by the Mathieu functions �31�. But because
of the difficulties associated with understanding and comput-
ing such functions, it was not until much later �8,9,14,32–35�
that this analytic solution for −1 /r4 provided us with more
than the threshold behavior �6,36�. The solutions for all other
potentials with ��2 �19,21� are of comparable difficulty.
They all belong to a class of special functions that, for non-
zero energies, are solutions of second-order ordinary differ-
ential equations with two irregular singularities, one at the
origin and one at infinity.

As an example of the conceptual difficulties, and also to
motivate our study in this work, recall that one of the hall-
mark results of the QDT for ��2 can be expressed in terms
of the K matrix as follows �1–4�:

Kl = tan �l = tan��l
�l� + �l

�s�� . �1�

Namely, the total scattering phase shift is a sum of a phase
shift due to the long-range potential, �l

�l�, which has strong
energy dependence, and a phase shift due to short-range in-
teractions, �l

�s�, which depends weakly on energy and can be
extrapolated across the threshold �1–4�. The comparable re-
sult that we have derived for ��2 �19–21,23,25� takes the
form

Kl = tan �l = �Zgc
c Kc − Zfc

c ��Zfs
c − Zgs

c Kc�−1, �2�

where Kc is a short-range K matrix that depends weakly on
energy and can be written in terms of a short-range phase
shift as Kc=tan �s. The Zxy

c are elements of a 2�2 Zc matrix

that satisfies det�Zc�=1 �23�. They are all universal functions
of a scaled energy that are determined solely by the long-
range potential. A similar result also appears in the works of
O’Malley et al. �6� and Cavagnero �15�, and has been espe-
cially fully developed by Fabrikant for electron-atom scatter-
ing �10,13�. Equation �2� cannot generally be written in the
form of Eq. �1�. Furthermore, it implies that we need gener-
ally three independent functions of energy, as opposed to a
single �l

�l�, to characterize the effect of long-range interaction
on the scattering process.

Equation �1� is so simple, and it make so much sense
intuitively, that it is ingrained in our understanding of the
QDT. In comparison, Eq. �2�, which is structurally different
from Eq. �1� as it requires three independent functions, looks
suspiciously complicated. This, and other related structural
differences between QDT for ��2 and that for ��2, have
been the results of mathematical derivations, but the origin
of such differences has not been fully explained or under-
stood. This lingering question about our theory, and the re-
lated question of whether it is in its most optimal form, has
slowed the pace of its development considerably.

The goal of this paper is to put the QDT for ��2, espe-
cially conceptually, on the same solid footing as that for �
�2. It would be a success if at the end of this paper one were
to learn to take Eq. �2� for granted, while viewing Eq. �1� as
one of its special cases, in the following sense. The descrip-
tion of the propagation of a Schrödinger wave in one dimen-
sion generally requires three parameters; they can be reduced
to a single phase shift when and only when there is no quan-
tum reflection �see, e.g., �37–40�� by the long-range poten-
tial. This, and related physics below the threshold, are what
we hope will transpire in this paper.

We start in Sec. II by briefly reviewing the characteristics
of the Schrödinger equation for −1 /r� type of potentials. In
Sec. III, we define various reference functions that are useful
in QDT for ��2, and we relate them to a base pair fc and gc.
In particular, we will define two sets of outgoing and incom-
ing wave-function pairs, one for the inner region and one for
the outer region. They are used in Sec. IV to develop a sys-
tematic understanding of quantum reflection by and quantum
transmission and tunneling through the long-range potential.
In Sec. V, we discuss what we call the quantum connection
formulas, in order to understand the structure of the QDT for
negative energies. In Sec. VI, we define various short-range
parameters including the quantum defect and a short-range S
matrix. The theory is applied to reexamine the two-body
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scattering process in Sec. VII, in both the K matrix and the S
matrix formulations. The theory for bound states is reformu-
lated in Sec. VIII, where we also introduce a generalized K
matrix for negative energies that is useful beyond the stan-
dard two-body problem. Conclusions are given in Sec. IX.
Appendix A summarizes the Zc and Wc matrices for �=6.
Appendix B gives a semiclassical theory for the relevant
QDT functions. There are two other Appendixes that expand
on the discussions in the main text.

II. CHARACTERISTICS OF −1 Õr� POTENTIALS

Consider the radial Schrödinger equation for potential
−C� /r�, with C��0 and 0����,

�−
	2

2


d2

dr2 +
	2l�l + 1�

2
r2 −
C�

r� − ��v�l�r� = 0. �3�

The special scale-invariant case of �=2 can be easily
dealt with through a redefinition of l �1,2�. For any other
cases of ��2, the potential −C� /r� has associated with it a
length scale ��, defined by

�� � �2
C�/	2�1/��−2�, �4�

and a corresponding energy scale sE= �	2 /2
��1 /���2. The
scaled version of Eq. �3� takes the dimensionless form of

� d2

drs
2 −

l�l + 1�
rs

2 +
1

rs
� + �s�v�sl

�rs� = 0, �5�

where rs=r /�� is a scaled radius and �s=� /sE is a scaled
energy. For l�0, the scaled effective potential Us�rs�
=−1 /rs

�+ l�l+1� /rs
2 has a maximum for ��2 and a mini-

mum for ��2. The maximum corresponds to a potential
barrier with a scale height of

Hsl = ��� − 2�/���2/��2/��−2��l�l + 1���/��−2�. �6�

The minimum corresponds to a potential well with a depth of
−Hsl.

Equation �5� has the following characteristics. For ��2
and �s�0, both rs=0 and rs=� are irregular singularities.
For ��2 and �s=0, rs=0 is an irregular singularity but r
=� is a regular singularity. For ��2, rs=0 is a regular sin-
gularity and only rs=� is an irregular singularity. All cases
of a single irregular singularity, namely ��2, or ��2 but
�s=0, can be easily solved by using, e.g., a series expansion
around the regular singularity. All cases of two irregular sin-
gularities, namely ��2 and �s�0, are considerably more
difficult �8,14,15,19,21�.

Focusing on the case of ��2 and �s�0, the solution of
Eq. �5� is not necessarily difficult for all energies or for all
regions of space. Defining

ks�rs� � ��s +
1

rs
� −

l�l + 1�
rs

2 �1/2

, �7�

and using the criteria for the applicability of the semiclassi-
cal approximation �see, e.g., Ref. �41��,

� d

drs

1

ks�rs�
� 
 1, �8�

one can easily show that the semiclassical approximation is
rigorously applicable �not an approximation� in three limits:
�a� the limit of 	�s	→�, namely for energies, both positive
and negative, sufficiently away from the threshold; �b� the
limit of rs→0 for all energies; and �c� the limit of rs→� for
all energies except zero. In other words, the real difficult
solutions correspond to a range of energies around the
threshold, and a region in space around rs
1, namely r

��, where the semiclassical approximation breaks down.
The existence of such a regime and some of its consequences
are now well known �16,17,22,42–48�. Some physical under-
standing of the quantum regime above the threshold have
also been developed by Ward and Macek �35� for −1 /r4 in-
teraction, and by Coté et al. �49� for ultracold s-wave atomic
collisions �−1 /r6�. This work shows how different behaviors
in the quantum and semiclassical regimes are reflected in the
structure of QDT for ��2. It gives a complete characteriza-
tion of both regimes, both above and below the threshold,
and for arbitrary angular momentum l.

III. PURE LONG-RANGE REFERENCE
WAVE FUNCTIONS

A pure long-range reference function pair is defined as a
pair of linearly independent solutions of Eq. �5�. Since a
second-order ordinary differential equation has only two lin-
early independent solutions, we need, in principle, only a
single pair. �Let us call it the base pair.� All other choices of
reference pairs can be related to the base pair by a linear
transformation, namely by a 2�2 matrix.

The rationale for defining and using different reference
pairs is thus not in math or in computation, as all physical
observables can be computed using a single pair. The pur-
pose is physical understanding. The physics that is straight-
forward to recognize or understand using one reference pair
may be very difficult or impossible to see in another.

In all our definitions of reference pairs to follow, the
Wronskian for a pair is defined with derivatives being with
respect to the scaled radius rs, e.g.,

W�fc,gc� � fcdgc

drs
−

dfc

drs
gc = 2/� . �9�

Furthermore, all reference pairs are normalized such that
they have a Wronskian of 2 /�. We also point out in advance
that for every pair of standing-wave reference functions,
there is a corresponding definition of a K matrix. And for
every pair of traveling-wave reference functions, there is a
corresponding definition of an S matrix. They will be dis-
cussed later in Secs. VI and VII.

A. fc and gc

The fc and gc functions form the base pair upon which
many of our QDT parameters and functions are defined.
They are chosen to have not only energy-independent, but
also angular-momentum-independent behaviors near the ori-
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gin �25�. Specifically, they are defined as the solutions of Eq.
�5� with the following asymptotic behavior:

f�sl
c �rs� 


rs→0

�2/��1/2rs
�/4 cos�y − �/4� , �10�

g�sl
c �rs� 


rs→0

− �2/��1/2rs
�/4 sin�y − �/4� �11�

for all energies. Here y= �2 / ��−2��rs
−��−2�/2. The normaliza-

tions have been chosen so that W�fc ,gc�=2 /�. Such solu-
tions of Eq. �5� exist for all ��2.

At zero energy, the solutions fc and gc can be easily found
for arbitrary � and l �6,25�. They are given by

f�s=0l
c �rs� = �2/�� − 2��1/2rs

1/2�J�0
�y�cos���0/2�

− Y�0
�y�sin���0/2�� , �12�

g�s=0l
c �rs� = − �2�� − 2��1/2rs

1/2�J�0
�y�sin���0/2�

+ Y�0
�y�cos���0/2�� , �13�

where �0= �2l+1� / ��−2�.
For nonzero energies, the solutions fc and gc are generally

much more difficult to find �8,14,15,19,21�. Whatever they
are, however, their asymptotic behaviors at large rs can al-
ways be written, for �s�0, as

f�sl
c �rs� 


rs→�� 2

�ks
�Zfs

c ��s,l�sin�ksrs −
l�

2
�

− Zfc
c ��s,l�cos�ksrs −

l�

2
�
 , �14�

g�sl
c �rs� 


rs→�� 2

�ks
�Zgs

c ��s,l�sin�ksrs −
l�

2
�

− Zgc
c ��s,l�cos�ksrs −

l�

2
�
 , �15�

where ks=�s
1/2, and can be written, for ��0, as

f�sl
c �rs� 


rs→�

���s�−1/2�Wf+
c ��s,l�e−�srs + Wf−

c ��s,l�e+�srs� ,

�16�

g�sl
c �rs� 


rs→�

���s�−1/2�Wg+
c ��s,l�e−�srs + Wg−

c ��s,l�e+�srs� ,

�17�

where �s= �−�s�1/2.
Equations �14�–�17� define a 2�2 Zc��s , l� matrix and a

2�2 Wc��s , l� matrix:

Zc � �Zfs
c Zfc

c

Zgs
c Zgc

c � , �18�

Wc � �Wf+
c Wf−

c

Wg+
c Wg−

c � , �19�

both of which are universal functions of the scaled energy �s
and the angular momentum l that are uniquely determined by
�. The Zc matrix describes, for positive energies, the propa-
gation of a wave function in a −1 /r� type of potential from
small to large distances, and vice versa. The Wc matrix de-
scribes the same physics for negative energies. The full im-
plications of these statements will become increasingly clear
as the paper progresses.

Without actually solving any equation or invoking any
properties of a specific potential, there are a couple of things
that we do know about the Zc and Wc matrices. First, they are
both real, because Eq. �5� is real �we restrict ourselves to real
energies and real angular momenta in this paper� and the
boundary conditions we use to define fc and gc are real.
Second, since the Schrödinger equation preserves the
Wronskian, the Wronskian of fc and gc that we evaluate us-
ing their asymptotic behaviors at infinity must be equal to
that obtained using Eqs. �10� and �11�, which is 2 /�. This
means that the elements of the Zc and the Wc are not all
independent, but are constrained by

det�Zc� = Zfs
c Zgc

c − Zgs
c Zfc

c = 1, �20�

det�Wc� = Wf+
c Wg−

c − Wg+
c Wf−

c = 1. �21�

In other words, both Zc and Wc have only three independent
real elements. The same consideration and conclusion can in
fact be put in a much broader context. Namely, the descrip-
tion of the propagation of a Schrödinger wave in one dimen-
sion generally requires three independent real parameters, an
almost trivial fact, but nevertheless worth keeping in mind.
The Zc and Wc matrices for �=6 �23,50� are summarized in
Appendix A.

There is one more important property of fc and gc that
should be noted. That is, because the boundary conditions we
use to define them are independent of both �s and l, then for
��3, fc and gc are entire functions of both �s and l at any
finite rs. This is due to a theorem by Poincaré �51� �see, e.g.,
Ref. �52��.

B. fc0 and gc0

The reference pair of fc0 and gc0 is defined with boundary
conditions near the origin that differ from those for fc and gc

by a phase of ��0 /2,

f�sl
c0 �rs� 


rs→0

�2/��1/2rs
�/4 cos�y − ��0/2 − �/4� , �22�

g�sl
c0 �rs� 


rs→0

− �2/��1/2rs
�/4 sin�y − ��0/2 − �/4� . �23�

They are obviously related to fc and gc by an orthogonal
transformation,
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� fc0

gc0 � = �cos���0/2� − sin���0/2�
sin���0/2� cos���0/2�

�� fc

gc � . �24�

This pair differs only by normalization constants from the f0

and g0 pair used in our original solution for the −1 /r6 poten-
tial �19�. The K matrix defined using this pair �see Sec. VI� is
still the most convenient for describing the threshold behav-
ior �20� and cases in which either a bound state or a shape
resonance state is very close to the threshold �23,28�.

C. fi+ and fi−

There are two sets of outgoing and incoming waves that
can be rigorously defined for −1 /r� types of potentials with
��2. Their definitions are the key for a systematic under-
standing of quantum reflection by and quantum transmission
and tunneling through such potentials.

f i+ and f i− define the outgoing and incoming waves in the
inner region of rs
1, namely r
��. Specifically, they are
defined by

f�sl
i+ �rs� 


rs→0 1
��

ei�/4rs
�/4 exp�− i�y − �/4�� , �25�

f�sl
i− �rs� 


rs→0 1
��

ei�/4rs
�/4 exp�+ i�y − �/4�� , �26�

and correspond to traveling waves with a flux of 	 / ��
���
in the �r̂ directions, respectively. Note that it is the negative
exponential that corresponds to the outgoing wave since y is
a decreasing function of rs.

This pair is related to fc and gc by a unitary transforma-
tion,

� f i+

f i− � =
ei�/4

�2
�1 i

1 − i
�� fc

gc � , �27�

and similar to fc and gc, they are well defined by the same
boundary conditions for all energies.

D. fo+ and fo−

The previous three reference pairs are all defined with the
boundary condition at small rs. Now we discuss reference
functions that are defined by their asymptotic behaviors at
large rs. These functions are used in definitions of the K and
the S matrices that are closely related to the scattering ex-
periment.

We start with fo+ and fo−, which correspond to outgoing
and incoming waves in the outer region of rs�1 �r����.
They are defined for positive energies by

f�sl
o+�rs� 


rs→� 1
��ks

ei�/4 exp�+ iksrs� , �28�

f�sl
o−�rs� 


rs→� 1
��ks

ei�/4 exp�− iksrs� , �29�

corresponding to traveling waves with a flux of 	 / ��
��� in
the �r̂ directions, respectively. They are defined for negative
energies by

f�sl
o+�rs� 


rs→� 1
���s

exp�− �srs� , �30�

f�sl
o−�rs� 


rs→� 1
���s

exp�+ �srs� . �31�

The phase factors and normalizations are chosen here
such that �a� Eqs. �30� and �31� are analytic continuation of
Eqs. �28� and �29� on the physical sheet, on which ��s�1/2

= i�s for negative energies. This allows for a consistent defi-
nition of the S matrix for both positive and negative energies
�and also for complex energies�. �b� fo+ and fo− are both real
for negative energies, while maintaining the standard defini-
tion of the S matrix for positive energies. �c� W�fo+ , fo−�
=2 /�.

Like any other solutions of Eq. �5�, fo+ and fo− can be
written as linear superpositions of fc and gc. From Eqs. �16�
and �17�, it is clear that they are related, for negative ener-
gies, by the Wc matrix,

� fc

gc � = Wc� fo+

fo− � = �Wf+
c Wf−

c

Wg+
c Wg−

c �� fo+

fo− � , �32�

or its inverse,

� fo+

fo− � = � Wg−
c − Wf−

c

− Wg+
c Wf+

c �� fc

gc � . �33�

Equation �32� explains the notation that we have chosen for
the elements of the Wc matrix.

For positive energies, it is easy to show from Eqs. �14�
and �15� that fo+ and fo− are related to the base pair by

� fo+

fo− � =
eil�/2−i�/4

�2
� − �Zgc

c − iZgs
c � �Zfc

c − iZfs
c �

�− 1�l�Zgc
c + iZgs

c � − �− 1�l�Zfc
c + iZfs

c �
�

�� fc

gc � . �34�

Here we have used the fact that l is an integer.
In addition to these transformations between fo� and the

base pair fc and gc, another important set of transformations
are those between fo� and f i�, which, as will become clear
in Secs. IV and V, are most closely related to the physics of
quantum reflection above the threshold and quantum connec-
tion formulas below the threshold. Combining Eq. �34� with
Eq. �27�, we have for positive energies

� fo+

fo− � = U�oi�� f i+

f i− �
=�U++

�oi� U+−
�oi�

U−+
�oi� U−−

�oi� �� f i+

f i− � , �35�

where

U++
�oi� = − eil�/2��Zfc

c − Zgs
c � − i�Zfs

c + Zgc
c ��/2,

U+−
�oi� = eil�/2��Zfc

c + Zgs
c � − i�Zfs

c − Zgc
c ��/2,
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U−+
�oi� = �U+−

�oi���,

U−−
�oi� = �U++

�oi���.

The inverse of this transformation is

� f i+

f i− � = � �U++
�oi��� − U+−

�oi�

− �U+−
�oi��� U++

�oi� �� fo+

fo− � . �36�

From Eqs. �32� and �27�, we have for negative energies

� fo+

fo− � =
e−i�/4

�2
� Wg−

c + iWf−
c Wg−

c − iWf−
c

− �Wg+
c + iWf+

c � − �Wg+
c − iWf+

c �
�� f i+

f i− � .

�37�

E. s, c, s̃, and c̃

The reference pair s and c is defined for positive energies
by

s�sl
�rs� 


r→�� 2

�ks
sin�ksrs − l�/2� , �38�

c�sl
�rs� 


r→�

−� 2

�ks
cos�ksrs − l�/2� . �39�

They are normalized such that W�s ,c�=2 /�. Their relation-
ship to fc and gc takes a simple form, from Eqs. �14� and
�15�, of

� fc

gc � = Zc�s

c
� = �Zfs

c Zfc
c

Zgs
c Zgc

c ��s

c
� �40�

for positive energies. This equation explains the notation that
we have newly adopted for the elements of the Zc matrix.

For negative energies, the analytic continuations of s and
c are trivially complex by different phase factors, which also
makes the corresponding K matrix imaginary. Instead of such
a definition, we find it more useful to define a different pair

s̃�sl
�rs� 


r→� 1
�2��s

�e−�srs − �− 1�le+�srs� , �41�

c̃�sl
�rs� 


r→�

�− 1�l 1
�2��s

�e−�srs + �− 1�le+�srs� , �42�

which are both real and normalized to W�s̃ , c̃�=2 /�. This
pair will be used to define a generalized K matrix K̃l that is
real for negative energies. Their relationship to the base pair
is given, using Eqs. �16� and �17�, by

� s̃

c̃
� =

1
�2
� Wg−

c + �− 1�lWg+
c − �Wf−

c + �− 1�lWf+
c �

�− 1�l�Wg−
c − �− 1�lWg+

c � − �− 1�l�Wf−
c − �− 1�lWf+

c �
�� fc

gc � . �43�

To end this section on reference functions, we point out
that any transformation matrix relating any two pairs defined
at two different boundaries, rs→0 and rs→�, respectively,
contains full information on the propagation of a wave func-
tion through the long-range potential, with Zc being one ex-
ample above the threshold and Wc being one example below
the threshold. Different transformations of this type represent
different views of the same physics. We also point out that
due to our consistent choices of normalization, namely all
reference pairs having Wronskians of 2 /�, the determinants
of all such transformations are equal to 1. They are generally
not, however, either orthogonal or unitary. The physics asso-
ciated with this nonunitarity is the subject of the next section.

IV. QUANTUM REFLECTION BY AND QUANTUM
TRANSMISSION AND TUNNELING THROUGH

THE LONG-RANGE POTENTIAL

There are two sets of reflection and transmission ampli-
tudes that can be defined for −1 /r� type of potentials with
��2, one corresponding to a traveling wave going inside-
out, another for a traveling wave going outside-in. For a
traveling wave going inside-out, the reflection amplitude,
rl

�io�, and the transmission amplitude, tl
�io�, are defined by a

solution v�sl
�io� for a −1 /r� potential with boundary conditions

v�sl
�io� 


rs
1

f�sl
i+ + rl

�io�f�sl
i−



rs�1

tl
�io�f�sl

o+. �44�

But since v�sl
�io� is itself a solution for the −1 /r� potential, it

can be written as a linear combination of either fo+ and fo− or
f i+ and f i−. As a result, the limit signs in Eq. �44� are equiva-
lent to equal signs. This further means that the relationship
between fo+ and f i� can be written in terms of the reflection
and transmission amplitudes as

f�sl
o+ = �1/tl

�io��f�sl
i+ + �rl

�io�/tl
�io��f�sl

i− . �45�

Comparing this equation with Eq. �35�, we obtain

tl
�io� = �U++

�oi��−1

=− e−il�/2 2

�Zfc
c − Zgs

c � − i�Zfs
c + Zgc

c �
, �46�

rl
�io� = U+−

�oi�/U++
�oi�
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=−
�Zfc

c + Zgs
c � − i�Zfs

c − Zgc
c �

�Zfc
c − Zgs

c � − i�Zfs
c + Zgc

c �
. �47�

Similarly, for a traveling wave going outside-in, the re-
flection and transmission amplitudes are defined by a solu-
tion v�sl

�oi� for a −1 /r� potential with boundary conditions

v�sl
�oi� 


rs�1

f�sl
o− + rl

�oi�f�sl
o+



rs
1

tl
�oi�f�sl

i− . �48�

Again, this solution is precisely v�sl
�oi�= tl

�oi�f�sl
i− and the limit

signs are equivalent to equal signs. We have, therefore,

f�sl
i− = �rl

�oi�/tl
�oi��f�sl

o+ + �1/tl
�oi��f�sl

o−. �49�

Comparing it to Eq. �36�, we obtain

tl
�oi� = �U++

�oi��−1 = tl
�io�,

rl
�oi� = − �U+−

�oi���/U++
�oi� �50�

=�− 1�l �Zfc
c + Zgs

c � + i�Zfs
c − Zgc

c �
�Zfc

c − Zgs
c � − i�Zfs

c + Zgc
c �

. �51�

Equations �46�, �47�, �50�, and �51� show that we have the
same transmission probability Tl

c= 	tl
�io�	2= 	tl

�oi�	2, and the
same reflection probability Rl

c= 	rl
�io�	2= 	rl

�oi�	2, for waves go-
ing either inside-out or outside-in. They are given by

Tl
c��s� =

4

�Zfs
c + Zgc

c �2 + �Zfc
c − Zgs

c �2 , �52�

Rl
c��s� =

�Zfs
c − Zgc

c �2 + �Zfc
c + Zgs

c �2

�Zfs
c + Zgc

c �2 + �Zfc
c − Zgs

c �2 . �53�

From det�Zc�=1, it is easy to verify that

Tl
c + Rl

c = 1. �54�

The transmission and reflection amplitudes can now be
rewritten in terms of the reflection probability and a couple
of phases,

tl
�io� = tl

�oi� = �1 − Rl
c exp�− il�/2 − i�/2 + i�l

c� , �55�

where the phase �l
c��s� is defined by

tan �l
c =

Zgs
c − Zfc

c

Zfs
c + Zgc

c �56�

and

cos �l
c =

Zfs
c + Zgc

c

��Zfs
c + Zgc

c �2 + �Zfc
c − Zgs

c �2
. �57�

�We need both equations to define �l
c to within a 2�.� The

reflection amplitudes can be written as

rl
�oi� = �− 1�l�Rl

c exp�i��l
c + �l

c�� , �58�

rl
�io� = �Rl

c exp�i��l
c − �l

c�� , �59�

where we have defined phase �l
c��s� by

tan �l
c =

Zgs
c + Zfc

c

Zgc
c − Zfs

c �60�

and

cos �l
c =

Zgc
c − Zfs

c

��Zfs
c − Zgc

c �2 + �Zfc
c + Zgs

c �2
. �61�

Note that there is a phase difference between reflection am-
plitudes for particles going inside-out and outside-in.

Equations �52�–�61� give a complete description of the
quantum reflection by and transmission and tunneling
through a long-range potential of the type of −1 /r� with �
�2. They also give an alternative parametrization of the
QDT for ��2 and �s�0. Instead of the three independent
elements of the Zc matrix, we can use three alternative QDT
functions �l

c, Rl
c, and �l

c, in terms of which the elements of
the Zc matrix can be written as

Zfs
c =

1

�1 − Rl
c
�cos �l

c − �Rl
ccos �l

c� , �62�

Zfc
c = −

1

�1 − Rl
c
�sin �l

c − �Rl
csin �l

c� , �63�

Zgs
c =

1

�1 − Rl
c
�sin �l

c + �Rl
csin �l

c� , �64�

Zgc
c =

1

�1 − Rl
c
�cos �l

c + �Rl
ccos �l

c� . �65�

Each alternative has its own characteristics and utilities.
The Zc matrix comes most naturally from the mathematical
solutions of Eq. �5� �8,9,14,19,21�, while the reflection prob-
ability and phases have the clearest physical interpretation.
Specifically, Rl

c is the quantum reflection probability that in
some cases is directly observable �37�. �l

c is the long-range
phase shift associated with the transmission amplitude. It
will be called the long-range transmission phase shift, or the
long-range phase shift for short. �l

c will be called the long-
range reflection phase shift. It determines the phase differ-
ences both between the reflection and the transmission am-
plitudes and between the reflection amplitudes for particles
going inside-out and outside-in. Similar to the Zc matrix, the
parameters �l

c, Rl
c, and �l

c are all universal functions of the
scaled energy �s that are uniquely determined by �.

The parametrization using �l
c, Rl

c, and �l
c helps us to es-

tablish a clear relationship between quantum reflection and
the structure of QDT for ��2. It also provides us with a
quantitative measure that separates the quantum and the
semiclassical regions of energies. From either Eq. �53� or
from Eqs. �62�–�65�, it is easily deduced that Rl

c=0 if and
only if Zc is orthogonal. This means the following: �a� Rl

c is
a measure of the orthogonality of the Zc matrix, and therefore
determines the number of independent parameters required
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to characterize it. �b� Since the semiclassical Zc, as given by
Eq. �B4�, is orthogonal, Rl

c is also a measure of the deviation
from the semiclassical approximation. It serves as an “order
parameter” with the region of Rl

c�0 corresponding to the
quantum region, and the region of Rl

c�0 corresponding to
the semiclassical region. These points are conveniently sum-
marized in the following equation, directly from Eqs.
�62�–�65�, which we call the semiclassical limit for Zc:

Zc 

Rl

c→0�cos �l
c − sin �l

c

sin �l
c cos �l

c � . �66�

It is a much more precise version of the semiclassical
limit for Zc than using the limit of �s→�, which would have
provided only trivial information. Through Rl

c we know how
the semiclassical limit is reached, how accurate it is at a
certain energy, and how the Zc matrix goes from requiring
three independent parameters in the quantum region of Rl

c

�0 to requiring only a single parameter �l
c in the semiclas-

sical region of Rl
c�0.

From Eq. �2�, it is also clear that it is in this limit of Rl
c

→0 that Eq. �2� becomes equivalent to Eq. �1�. In other
words, the QDT for ��2 becomes structurally the same as
that for ��2 only for energies at which there is no appre-
ciable quantum reflection �the semiclassical limit�. We will
get back to the discussion of the physical meaning of Eq. �2�
in Sec. VII. Further discussion of the structural differences
between QDT for ��2 and ��2 can be found in Appendix
C.

V. QUANTUM CONNECTION FORMULAS

For negative energies ��s�0�, there is no longer any
transmitted wave into the classically forbidden region. And
there is no traveling wave going outside-in. There are, how-
ever, still two reflection amplitudes that can be defined, by

fo+ = C�f i+ + r�io�+f i−� �67�

and

fo− = C�f i+ + r�io�−f i−� , �68�

for reference functions with exponentially decreasing �fo+�
and exponential increasing �fo−� boundary conditions at large
rs, respectively. From Eq. �37�, we obtain

rl
�io�+ =

Wg−
c − iWf−

c

Wg−
c + iWf−

c = exp�i2�l
c� . �69�

It is a pure phase with 	rl
�io�+	2=1, as to be expected for

�s�0. Here �l
c, which we call the reflection phase for fo+, is

defined by

tan �l
c = − Wf−

c /Wg−
c �70�

and

cos �l
c = Wg−

c /Dl
c+, �71�

in which the amplitude Dl
c+ is defined by

Dl
c+ = ��Wf−

c �2 + �Wg−
c �2. �72�

Similarily, we have from Eq. �37�

rl
�io�− =

Wg+
c − iWf+

c

Wg+
c + iWf+

c = exp�i2�l
c� , �73�

where �l
c, the reflection phase for fo−, is defined by

tan �l
c = − Wf+

c /Wg+
c �74�

and

cos �l
c = Wg+

c /Dl
c, �75�

in which the amplitude Dl
c is defined by

Dl
c = ��Wf+

c �2 + �Wg+
c �2. �76�

In terms of the two phases �l
c and �l

c, and the two am-
plitudes Dl

c+ and Dl
c, the Wc matrix can be rewritten as

Wc = �− Dl
c sin �l

c − Dl
c+ sin �l

c

Dl
c cos �l

c Dl
c+ cos �l

c � . �77�

The four parameters are not all independent. det�Wc�=1
means that they are related by

Dl
c+Dl

c sin��l
c − �l

c� = 1. �78�

Equations �77� and �78� suggest an alternative description
of the propagation of wave functions for �s�0. Instead of
Wc, we can use three alternate functions such as �l

c, Dl
c, and

�l
c.
We already know that the phases �l

c and �l
c have the

interpretation of being the reflection phases for fo�, respec-
tively. Their physical meaning and that of the amplitudes Dl

c+

and Dl
c can be further understood by rewriting the asymptotic

forms of fo�, using Eqs. �33�, �10�, and �11�, in the limit of
small rs as

f�sl
o+�rs� 


rs→0

�2/��1/2rs
�/4Dl

c+ cos�y − �/4 + �l
c�



rs→� 1

���s

exp�− �srs� , �79�

f�sl
o−�rs� 


rs→0

− �2/��1/2rs
�/4Dl

c cos�y − �/4 + �l
c�



rs→� 1

���s

exp�+ �srs� , �80�

in which the second line of each equation is simply from the
definitions of fo�.

Equations �79� and �80� give what we call the quantum
connection formulas. They are fully quantum results for con-
necting two regions, rs→0 and rs→�, in which the semi-
classical approximation is rigorously applicable �not an ap-
proximation�. It is clear from these equations that Dl

c+, �l
c,

Dl
c, and �l

c represent the amplitudes and the phases of fo� in
the region of rs
1. The corresponding semiclassical connec-
tion formulas are Eqs. �B11� and �B12� given in Appendix B.
It is clear that unlike the semiclassical connection formulas,
the amplitudes Dl

c+ and Dl
c are generally not the inverse of
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each other, and the phases �l
c and �l

c do not always differ by
� /2.

By comparing either Eqs. �77� and �78� with the semiclas-
sical Wc as given by Eq. �B8�, or by comparing Eqs. �79� and
�80� with the corresponding semiclassical connection formu-
las, Eqs. �B11� and �B12�, it is easily deduced that Wc, with
generally three independent parameters, reduces to that of
the semiclassical approximation with two independent pa-
rameters if and only if sin��l

c−�l
c�=1, namely, when the

phases corresponding to fo+ and fo−, respectively, differ by
� /2. This criterion can be more conveniently expressed as
Ql

c=0, where Ql
c is an “order parameter” for negative ener-

gies defined by

Ql
c = −

Wf+
c Wf−

c + Wg+
c Wg−

c

���Wf+
c �2 + �Wg+

c �2���Wf−
c �2 + �Wg−

c �2�

=− cos��l
c − �l

c� . �81�

In terms of Ql
c, the quantum and the semiclassical regions

of energies below the threshold can be characterized by Ql
c

�0 and Ql
c�0, respectively. And the semiclassical limit for

Wc, in a similar sense as discussed earlier for Zc, can be
written as

Wc 

Ql

c→0�Dl
c cos �l

c − �1/Dl
c� sin �l

c

Dl
c sin �l

c �1/Dl
c� cos �l

c � . �82�

Table I summarizes the structure of QDT for ��2,
namely the independent functions required to describe states
of positive energies �s�0 and states of negative energies
�s�0. Some further comments related to the quantum con-
nection formulas can be found in Appendix D.

VI. QUANTUM-DEFECT AND OTHER
SHORT-RANGE PARAMETERS

With the knowledge developed in the previous sections
about the long-range potential, we are now ready to construct
the QDT for any real two-body interaction V�r�, which is
necessarily different from −C� /r� at short distances for �
�2.

Consider a quantum system described by the radial
Schrödinger equation,

�−
	2

2


d2

dr2 +
	2l�l + 1�

2
r2 + V�r� − ��u�l�r� = 0, �83�

in which the potential V�r� has an asymptotic behavior char-
acterized by

V�r� 

r→�

− C�/r�. �84�

Let r0 to be the radius at which the potential becomes well
represented by Eq. �84�. For any r�r0, the regular solution
of Eq. �83�, namely the solution that satisfies the boundary
condition of limr→0 u�l→0, at the origin, can always be writ-
ten as a linear combination of the base pair fc and gc, as

u�l�r� = A�l�f�sl
c �rs� − Kc��,l�g�sl

c �rs�� . �85�

This equation defines the short-range Kc matrix �25�,
which can be obtained by matching the regular solution u�l
with Eq. �85� at any r�r0, yielding

Kc��,l� = � f�sl
c

g�sl
c � �f�s

c
l�/f�sl

c � − �u�l� /u�l�

�g�s

c
l�/g�sl

c � − �u�l� /u�l�
, �86�

where the derivatives are with respect to r, not the scaled
radius rs.

We briefly summarize some of the key properties of Kc

here, as they have been discussed elsewhere �25,27,53� �a� It
is well defined for all energies and all l. �b� It is a slowly
varying function of energy around the threshold. �c� For po-
tentials ���3� with a well-defined s-wave scattering length
al=0, Kc��=0, l=0� is related to the s wave scattering length
by �17,27,54�

al=0/�� = �b2b��1 − b�
��1 + b��Kc�0,0� + tan��b/2�

Kc�0,0� − tan��b/2�
, �87�

where b=1 / ��−2�. �d� For atom-atom or ion-atom interac-
tions, Kc is approximately independent of l. Some important
consequences of this property have been addressed else-
where �23,25,27,54�.

Among these properties, the l-insensitivity is strictly a
molecular property due to a combination of a strongly repul-
sive interaction, rising faster than 1 /r2 at short distances, and
large masses of atoms compared to electrons, in addition to
��2 �25,27,53�. It is not applicable to electron-atom inter-
actions �6,9,10,13,33–35� where the angular momentum term
actually dominates the interaction near the origin. On a re-
lated mathematical note, for V�r� rising faster than 1 /r2 at

TABLE I. The structure of QDT for −1 /r� type of potentials with ��2. Independent QDT functions
required to describe states of positive energies ��s�0� and states of negative energies ��s�0�. There are two
distinctive energy regions in both cases: a quantum region �characterized by Rl

c�0 for �s�0 and by Ql
c

�0 for �s�0� and a semiclassical region �characterized by Rl
c�0 for �s�0 and by Ql

c�0 for �s�0�.

�s�0
No. of

functions Conditions �s�0
No. of

functions Conditions

Quantum Zc matrix 3 None Wc matrix 3 None

or �l
c, Rl

c, and �l
c 3 None or �l

c, Dl
c, and �l

c 3 None

Semiclassical �l
c 1 Rl

c�0 �l
c and Dl

c 2 Ql
c�0
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small r and ��3, Kc�� , l� is an analytic function of both �
and l with only simple poles. This comes from Eq. �86� by
combining the properties of fc and gc discussed in Sec. III
and applying the theorem of Poincaré �51,52� to u�l.

In terms of Kc, the short-range phase shift, �s�� , l�, is de-
fined by

Kc��,l� = tan �s��,l� , �88�

and the quantum defect, 
c�� , l�, is defined as a parameter in
a range of 0�
c�1 and related to Kc by

Kc��,l� = tan��
c��,l� + �b/2� . �89�

This definition of a quantum defect facilitates a simple clas-
sification of molecules as discussed in Ref. �27�. Further ad-
vantages of using the quantum defect to parametrize the
spectrum will be illustrated elsewhere.

The short-range S matrix, Sc�� , l�, is the S matrix defined
in reference to f i+ and f i−. Specifically, it is defined in the
region of r�r0 by

u�l�r� = C�f�sl
i− �rs� + Sc��,l�f�sl

i+ �rs�� . �90�

From Eq. �27�, it is easy to show that

Sc =
1 + iKc

1 − iKc = ei2�s
. �91�

The short-range parameters �s, 
c, and Sc all have prop-
erties similar to those of Kc. In particular, they are all insen-
sitive to l for atom-atom or ion-atom interactions. This ex-
plains our removal of their explicit l dependence from their
respective subscripts. There is one subtlety about this
l-insensitivity that is worth pointing out here. From Eq. �85�,
it is clear that Kc→ +� describes the same physics as Kc

→−�, both corresponding to u�l
gc, differing only in an
arbitrary overall phase factor of �. This means that a positive
Kc�1 is approximately the same as a negative Kc with
	Kc	�1. In a similar sense, a 
c
0 is “close” to a 
c
1,
and so on.

The parameter Kc0 is the K matrix corresponding to the
reference pair fc0 and gc0. Specifically, it is defined, in the
region of r�r0, by

u�l�r� = C�f�sl
c0 �rs� − Kl

c0���g�sl
c0 �rs�� . �92�

From the relationship between the fc0,gc0 pair and the
base pair fc and gc, as given by Eq. �24�, it is easy to show
that Kc0 is related to Kc by

Kl
c0��� =

Kc��,l� − tan���0/2�
1 + Kc��,l�tan���0/2�

�93�

=tan��
c��,l� − �lb� . �94�

This parameter is closely related to the parameter Kl
0��� used

in our earlier works �19,20�, specifically Kl
c0=−Kl

0. It is the
same as the parameter that we called xl��� in Refs. �27,28�.

The parameter Kl
c0��� had a disadvantage in earlier works

because it depends on l explicitly through �0= �2l+1� / ��
−2�, thus hiding the relation between the short-range param-
eters for different l. This is, however, no longer an issue, as

knowing Kc to be approximately independent of l tells us
how Kl

c0��� will depend on l through Eq. �93�. It is still the
most convenient parameter to use for near-threshold expan-
sions �20�. It is also most convenient for describing either a
bound state or a shape resonance state that is close to the
threshold, since Kl

c0��=0�=0 corresponds exactly to having a
bound or a quasibound state of angular momentum l right at
the threshold �23,27,28�.

VII. SCATTERING STATES

For states with ��0, the scattering properties are deter-
mined by the asymptotic behaviors of the regular solution u�l
in the limit of r→�. These properties can be described using
either a K matrix or an S matrix. Both formulations are ad-
dressed here as they provide different physical insights.

A. K matrix description

The K matrix is defined by

u�l�r� 

r→�

C�s�sl
�rs� − Kl���c�sl

�rs�� �95�

for positive energies. From the definitions of s and c, it is
easy to see that is related to the phase shift in the standard
fashion,

Kl = tan �l. �96�

From the definitions of Kl and Kc, and the transformation
between fc, gc and s, c, as given by Eq. �40�, we obtain Eq.
�2� and its representation in terms of �l

c, Rl
c, and �l

c,

Kl = tan �l = �Zgc
c Kc − Zfc

c ��Zfs
c − Zgs

c Kc�−1

=
sin��l

c + �s� + �Rl
c sin��s − �l

c�

cos��l
c + �s� − �Rl

c cos��s − �l
c�

, �97�

where the second line of the equation follows from the first
by using Eqs. �62�–�65�.

Equation �2� and �97� gives a complete characterization
of two-body single-channel scattering by a potential V�r�
→−C� /r� in terms of a set of universal functions that de-
pends only on �, and a short-range parameter Kc that de-
pends weakly on energy around the threshold. For atom-
atom or ion-atom interactions where Kc is approximately
independent of l, they also imply that the scattering of one
partial wave is related to that of the other, such that, e.g., one
can predict the d scattering from the s wave scattering length
�23,25,29�.

From Eq. �97�, it is now transparent that Kl reduces to the
form of Eq. �1� only in the absence of quantum reflection. It
has a semiclassical limit, in the sense discussed earlier, given
by

Kl 

Rl

c→0

tan��l
c + �s� . �98�

The characterization of the effects of the long-range po-
tential on scattering goes from requiring three independent
functions in the quantum region of Rl

c�0, such as �l
c, Rl

c,
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and �l
c in Eq. �97�, to a single function, �l

c, in the semiclas-
sical region of Rl

c�0.
Getting back again to the comparison between Eqs. �2�

and �1�, it should now be clear that Eq. �2� gives a more
general description of the effects of the long-range interac-
tion on two-body scattering. It is a description that is in fact
applicable to any long-range potential. A casual examination
of the definitions of the Zc matrix and the Kc parameter im-
mediately reveals that they are completely generic, and can
be done for any potential, including the ones with ��2 and
the ones with multiple length scales such as −C6 /r6−C8 /r8.
Equation �2� should thus be the form that we can take for
granted. In comparison, Eq. �1� is a special case of Eq. �2�
that results when the corresponding Zc matrix becomes or-
thogonal. For potentials that behaves like −1 /r� with ��2
around the origin �here � may differ from ��, this orthogo-
nality is conveniently measured by one and only one quan-
tity, the reflection probability by the long-range potential Rl

c.
What exactly happens in the quantum regime of Rl

c�0 will
become more clear in the S matrix formulation.

B. S matrix description

The S matrix is defined by

u�l�r� 

r→�

C�f�sl
o−�rs� − �− 1�lSl���f�sl

o+�rs�� �99�

for all energies.
For positive energies, it is related to the Kl matrix and the

phase shift in the standard fashion,

Sl =
1 + iKl

1 − iKl
= ei2�l. �100�

From Eq. �2�, Sl can be written in terms of the short-range
Kc and the Zc matrix as

Sl =
Zfs

c − Zgs
c Kc − i�Zfc

c − Zgc
c Kc�

Zfs
c − Zgs

c Kc + i�Zfc
c − Zgc

c Kc�
. �101�

This equation does not offer much extra physical insight
than that already contained in the K matrix formulation.
More interesting is the following equation giving the S ma-
trix in the �l

c, Rl
c, and �l

c representation:

Sl = − �Rl
c exp�i��l

c + �l
c�� +

�1 − Rl
c�exp�i2�l

c�Sc

1 − �Rl
c exp�i��l

c − �l
c��Sc

.

�102�

It can be easily derived, e.g., by substituting Eqs. �62�–�65�
into Eq. �101�.

For conceptual understanding, we give here an alternative
view of Eq. �102� that makes its underlying physics more
transparent. First, note that the S matrix is closely related to
the reflection amplitude by the full potential, V�r�, for a trav-
eling wave going outside-in. This amplitude, rl

�oi�V, is de-
fined, for ��0, by

u�l�r� 

r→�

C�f�sl
o−�rs� + rl

�oi�V���f�sl
o+�rs�� , �103�

and differs from Sl only by a phase factor, Sl=−�−1�lrl
�oi�V.

From Eqs. �90�, �45�, and �49�, it is straightforward to show
that rl

�oi�V can be written in terms of the reflection and trans-
mission amplitudes for the long-range potential and the
short-range S matrix Sc as

rl
�oi�V = rl

�oi� +
tl
�oi�Sctl

�io�

1 − rl
�io�Sc

=rl
�oi� + tl

�oi�Sctl
�io��1 + rl

�io�Sc + �rl
�io�Sc�2 + ¯� . �104�

Equation �104� is exactly Eq. �102� expressed in terms of
reflection and transmission amplitudes, but with much more
transparent physics interpretation. Keeping in mind that Sc,
as defined by Eq. �90�, is precisely the reflection amplitude
by the short-range interactions for a particle going outside-in,
we have the following physical picture. Without quantum
reflection �Rl

c→0�, there is only a single path for scattering:
the particle goes all the way into the short-range region and
comes all the way back to infinity. The physics in this energy
region is contained in the semiclassical limit of Sl, which
follows directly from Eq. �102�,

Sl 

Rl

c→0

exp�i2��l
c + �s�� . �105�

It is an equation that we already understand from the K
matrix formulation. With quantum reflection, the picture
changes completely. The simple two-body potential scatter-
ing has now multiple paths to take, and the resulting ampli-
tude is a coherent superposition of all the amplitudes for
different paths. The first term in Eq. �104� is the amplitude
for reflection by the long-range potential, completely inde-
pendent of the short-range interactions. The second term is
the amplitude for a path in which the particle first gets into
the inner region, with amplitude tl

�oi�, reflected back by the
short-range potential, with amplitude Sc, then comes out
without being reflected any further back into the short-range
region, with an amplitude of tl

�io�. The third term corresponds
to a path in which the particle gets into the short-range re-
gion twice, once after being reflected back on its way out. In
general, the term containing �rl

�io�Sc� j corresponds to a path in
which the particle is reflected back j times by the long-range
potential on its way out.

Equation �102� can now be understood, quantitatively, as
follows. Scattering in the quantum regime by a potential
V�r�→−C� /r� with ��2 consists of a background due to
the long-range potential only, and an interference pattern due
to the particles being reflected back into the short-range re-
gion different numbers of times by the long-range interaction
before they eventually emerge. All interesting energy-
dependent features in the quantum region, such as shape
resonances, can be understood as being the results of such
interference. Similar to other conceptual understandings that
emerge from the QDT �1–4�, this physical picture requires
no assumption about short-range interactions.

Equation �102� also makes it more transparent to model
complete-absorbing short-range potentials using Sc=0. This

BO GAO PHYSICAL REVIEW A 78, 012702 �2008�

012702-10



is an effective single-channel model of a multichannel prob-
lem in which the probability for a particle to be scattered into
other channels by the short-range interactions is 1. In this
case, Eq. �102� gives Sl=−�Rl

c exp�i��l
c+�l

c��, independent
of short-range interactions, meaning that the universal quan-
tum reflection amplitude by the pure long-range −1 /r� po-
tential becomes directly observable in such experiments �37�.

C. Normalization of the continuum wave function

To understand transitions involving continuum states,
such as photodissociation or photoassociation �see, e.g., Ref.
�55��, we need not only the phase shifts but also the normal-
ized wave functions. While there is always some arbitrari-
ness in the normalization of a continuum state, one of the
most useful choices is the normalization per unit energy.

An energy-normalized regular wave function, call it
F�l�r�, is normalized according to

�
0

�

F��l�r�F�l�r�dr = ���� − �� . �106�

It corresponds to an asymptotic form of �1–4�

F�l�r� 

rs→�� 2


	2�k
�1/2

sin�kr − l�/2 + �l� . �107�

Comparing it with the asymptotic form of Eq. �85�, it is
straightforward to show that F�l�r� is given, in the region of
r�r0, by Eq. �85� with a normalization constant

A�l = �
��

	2 �1/2 1

��Zfs
c − KcZgs

c �2 + �Zfc
c − KcZgc

c �2
�108�

=�
��

	2 �1/2 	cos �s	�1 − Rl
c

�1 − 2�Rl
c cos��l

c − �l
c + 2�s� + Rl

c
.

�109�

VIII. STATES OF NEGATIVE ENERGIES

A. The S and the generalized K matrix for negative energy

Equation �99� defines the S matrix for all energies. For
negative energies, we have from Eq. �32�

Sl = − �− 1�lWf+
c − KcWg+

c

Wf−
c − KcWg−

c �110�

=− �− 1�l�Dl
c�2sin��l

c − �l
c�

sin��l
c + �s�

sin��l
c + �s�

, �111�

where the second line follows from the first by using Eqs.
�77� and �78�. Note that Sl is real for any real ��0.

The generalized K matrix for ��0 is the K matrix corre-
sponding to the s̃, c̃ reference pair defined in Sec. III. Spe-
cifically, it is defined by

u�l�r� 

r→�

C�s̃�sl
�rs� − K̃l���c̃�sl

�rs�� . �112�

From Eq. �43�, which relates the s̃, c̃ pair to fc and gc, we
have

K̃l =
Wf−

c + �− 1�lWf+
c − Kc�Wg−

c + �− 1�lWg+
c �

Wf−
c − �− 1�lWf+

c − Kc�Wg−
c − �− 1�lWg+

c �
�113�

=
sin��l

c + �s� + �− 1�l�Dl
c�2 sin��l

c − �l
c�sin��l

c + �s�
sin��l

c + �s� − �− 1�l�Dl
c�2 sin��l

c − �l
c�sin��l

c + �s�
.

�114�

It is real and is related to the S matrix for negative ener-
gies by

K̃l =
1 − Sl

1 + Sl
. �115�

Their semiclassical limits, in the sense discussed earlier, are
given by

Sl 

Ql

c→0

�− 1�l�Dl
c�2 cot��l

c + �s� �116�

and

K̃l 

Ql

c→0 tan��l
c + �s� − �− 1�l�Dl

c�2

tan��l
c + �s� + �− 1�l�Dl

c�2 . �117�

Note that both Sl and K̃l go from requiring three QDT func-
tions, �l

c, Dl
c, and �l

c, in the quantum region of Ql
c�0, to

requiring two functions, �l
c and Dl

c, in the semiclassical re-
gion of Ql

c�0.
The generalized K matrix and the S matrix for negative

energies contain more information about the negative energy
states than the bound spectrum. They are well defined for all
negative energies, and are useful beyond the standard two-
body problem, when the boundary condition at large r differs
from that of two-body bound states, namely when it differs
from limrs→� u�l→0. The generalized K matrix, which is a
generalization of Kl=tan �l to negative energies, has found
application in treating two atoms in a trap �50�. It is also
useful in the studies of liquid states �56� of many-atom quan-
tum systems, as will be illustrated elsewhere.

B. Bound spectrum

The bound spectrum is obtained by imposing the bound-
ary condition of limrs→� u�l→0 on the the regular solution
u�l given by Eq. �85�. Using the asymptotic behaviors of fc

and gc as given by Eqs. �16� and �17�, we obtain the bound
spectrum as the solutions of �25�

�l
c��s� = Kc��,l� , �118�

where

�l
c��s� = Wf−

c ��s,l�/Wg−
c ��s,l� �119�

=− tan �l
c. �120�

It means the bound spectrum is given by the crossing points
between a universal function of a scaled energy, �l

c��s�, and a
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slowly varying function of energy, Kc�� , l�, which depends
on the short-range interactions. For molecular systems where
Kc is approximately independent of l, Eq. �118� means that a
single parameter, Kc, 
c, or al=0, determines the entire rovi-
brational spectrum around the threshold �23,25,27�.

The bound spectrum can also be formulated or understood
in other ways. From Eqs. �118� and �120�, it is clear that the
bound spectrum can be written as the solutions of

sin��l
c + �s� = 0, �121�

which is formally the same as the corresponding formula for
��2 �1,2,4�, with �l

c playing the role of the � function in
Refs. �1,2,4�. It can also be formulated as the solutions of

�l
c + �s = �v + 1�� , �122�

where v corresponds, for molecules, to the vibrational quan-
tum number.

Note that the fact that the bound spectrum can be written
in the form of Eq. �122�, in itself, has nothing to do with the
applicability of the semiclassical approximation. The �l

c here
is the quantum reflection phase for fo+ as defined by Eqs.
�70� and �71�, which is different, in the quantum region of

Ql
c�0, from the corresponding semiclassical phase �̄l

c de-
fined in Appendix B. The same formal expression for the
spectrum does mean that the breakdown of the semiclassical
approximation �22,43–46,48� is more transparent in the ex-

pressions for the S and the K̃l, which contain more informa-
tion about the negative energy states. From Eq. �110�or Eqs.
�111� and �118�, it is clear that the bound spectrum corre-
sponds to the poles of the S matrix on the negative energy
axis. And from Eqs. �113� and �118�, it is clear that it also

corresponds to the solutions of K̃l=−1. Both S and K̃l have
different structures for the quantum and the semiclassical
regions of energies.

C. Normalization of the bound-state wave functions

To understand transitions and their rates involving bound
states, we will need, in addition to bound-state energies, their
corresponding normalized wave functions. Here we empha-
size that the QDT determines the wave function in the region
of r�r0 completely, including their normalizations �1–4�.

From the well known �1–4� and easy-to-derive equation

�
0

R

u�l
2 dr = � 	2

2

� lim

��→�

	W�u��l,u�l�	r=R

�� − �
, �123�

where the derivatives in the Wronskian are with respect to r,
it is straightforward to show that a bound-state wave function
F�bl�r�, normalized according to

�
0

�

�F�bl�r��2dr = 1, �124�

is given by Eq. �85� with a normalization constant

A�bl = � �

2��
�1/2�− � d�l

c��s�
d�s

�
�sbl


−1/2

�125�

=� �

2��
�1/2

	cos �l
c	�� d�l

c��s�
d�s

�
�sbl


−1/2

. �126�

Here �sbl is a scaled bound-state energy, namely one of the
solutions of Eq. �118�.

IX. CONCLUSIONS

In conclusion, we have presented a general formulation of
the QDT for −1 /r� type of potentials with ��2. Its struc-
tural differences from the standard theory for ��2 or from
the semiclassical theory are full explained and understood
through a systematic understanding of quantum reflection
above the threshold, and quantum connection formulas be-
low the threshold. The theory is given in two equivalent
representations, one in terms of the Zc and Wc matrices that
connect most naturally with the mathematical solutions for
the long-range potentials �8,9,14,19,21�, and the other in
terms of parameters—�l

c, Rl
c, �l

c above the threshold and �l
c,

Dl
c, �l

c below the threshold—that have the clearest physical
interpretation.

We note that we have discussed quantum reflection by the
long-range potential in a much broader context than in the
recent studies of atom-surface collisions at low temperatures
�37–40�. Excluding the retardation effect, these studies cor-
respond to our special case of l=0. Our theory is applicable
to any l, and treats reflection due to the rapid change in
potential, reflection by the potential barrier, and related tun-
neling through the barrier all in the same consistent frame-
work. Furthermore, these studies have only focused on the
reflection of particles going outside-in. As discussed in Sec.
VII, for two-body scattering in the quantum regime, it is the
multiple reflections of particles in the inner region, namely
the quantum reflection by the long-range potential for a par-
ticle going inside-out, that gives rise to the interesting struc-
tures in the scattering amplitudes or cross sections, including
shape resonances. This reflection amplitude for a particle go-
ing inside-out differs in phase from that for a particle going
outside-in. Explicit results for quantum reflection by poten-
tials with �=3,4 ,6 will be presented elsewhere.

For long-range potentials for which we already know the
solutions ��=3,4 ,6 �8,14,19,21,57��, this work considerably
improves our physical understanding of the QDT associated
with them �6,9–13,18,20,21,24–26�. Above the threshold, the
interesting energy-dependent features in the quantum regime,
including shape resonances, can now be understood rigor-
ously as an interference pattern. Below the threshold, the
breakdown of the semiclassical approximation in the quan-
tum regime �22,43–46,48� can now be fully understood
through the quantum connection formulas. Importantly, we
have identified two “order parameters,” Rl

c above the thresh-
old and Ql

c below the threshold, that clearly separate the
quantum regimes, Rl

c�0 �Ql
c�0�, from the semiclassical

regimes, Rl
c�0 �Ql

c�0�, with structures of the QDT being
different in each of them. Computationally, these “order pa-
rameters” help to identify the energies at which one can
safely make the transition from a complex full quantum cal-
culation to a much simpler semiclassical calculation.
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For all potentials with ��2, the theory, through a rigor-
ous connection to the semiclassical theory, gives the “high-
energy” limit of all QDT parameters and functions. The
question of where in energy this transition from quantum to
semiclassical behavior actually occurs, both above and be-
low the threshold, will be addressed much more completely
in future publications. Here we only point out that for posi-
tive energies, this transition occurs around the barrier height,
Hsl, since we already know classically that Rl

c=1 below the
barrier and Rl

c=0 above the barrier. This simple picture,
while far from complete, already explains why we call these
parameters “order parameters.” Such terminology would not
have been appropriate or meaningful if Rl

c were to go to zero
slowly and over a large range of energies. How this picture is
modified quantum mechanically �35,38,39,49�, and what
happens for negative energies, will require in-depth studies
of individual potentials, and will be presented elsewhere.

For long-range potentials with yet unknown full quantum
solutions, such as �=5, the theory provides considerable
qualitative understanding and constraints that may prove to
be helpful in leading to their eventual full solutions.

This paper also serves some other practical utilities. �i� It
serves as a brief review of the key concepts of the QDT for
��2 without the interference from the related mathematical
complexities. �ii� It serves to clearly identify and isolate the
math problems that need to be solved; to find the Zc and the
Wc for understanding two-body scattering, bound spectrum,
quantum reflection, and tunneling, and transitions from quan-
tum to semiclassical regimes; and to further find fc and gc for
a more complete understanding including transition rates.
�iii� Since the discussions presented here are completely gen-
eral and applicable to any potential with ��2, we will not
need to repeat them for each individual potential. Finally,
this paper serves to define a set of standardized notions that
we plan to follow in our future works. The only variation,
when presenting results specific to a certain long-range po-
tential, is that we will add an extra superscript to specify the
potential, e.g., the notation of Zc�6� will refer to the Zc matrix
for −1 /r6 type of potentials, as in Appendix A.
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APPENDIX A: Zc AND Wc MATRICES FOR −1 Õr6 TYPE
OF POTENTIALS

We summarize here the Zc and Wc matrices for −1 /r6 type
of potentials. They follow straightforwardly from their defi-
nitions and the analytic solutions for the −1 /r6 potential �19�,

Zfs
c�6� =

2−1/2G�sl
���cos ��� − �0�

�X�sl
2 + Y�sl

2 �sin ��

���1 − �− 1�lM�sl
tan ��� − �0��sin���/2�X�sl

+ �1 + �− 1�lM�sl
tan ��� − �0��cos���/2�Y�sl

� ,

�A1�

Zfc
c�6� =

2−1/2G�sl
���cos ��� − �0�

�X�sl
2 + Y�sl

2 �sin ��

���tan ��� − �0� − �− 1�lM�sl
�sin���/2�X�sl

+ �tan ��� − �0� + �− 1�lM�sl
�cos���/2�Y�sl

� ,

�A2�

Zgs
c�6� =

2−1/2G�sl
���cos ��� − �0�

�X�sl
2 + Y�sl

2 �sin ��

���1 + �− 1�lM�sl
tan ��� − �0��cos���/2�X�sl

− �1 − �− 1�lM�sl
tan ��� − �0��sin���/2�Y�sl

� ,

�A3�

Zgc
c�6� =

2−1/2G�sl
���cos ��� − �0�

�X�sl
2 + Y�sl

2 �sin ��

���tan ��� − �0� + �− 1�lM�sl
�cos���/2�X�sl

− �tan ��� − �0� − �− 1�lM�sl
�sin���/2�Y�sl

� .

�A4�

Here M�sl
=G�sl

�−�� /G�sl
���, with �, X�sl

, Y�sl
, and G�sl

, all
of which are functions of the scaled energy �s, being defined
in Ref. �19�. An expression for Zc, with a different notation
for the elements, was given earlier in Ref. �23�.

The Wc matrix for −1 /r6 type of potential is given by

Wf+
c�6� = −

G�sl
���cos ��

�X�sl
2 + Y�sl

2 �
��1 − M�sl

�sin���/2�X�sl

+ �1 + M�sl
�cos���/2�Y�sl

� , �A5�

Wf−
c�6� =

G�sl
���

2�X�sl
2 + Y�sl

2 �sin ��
��1 + M�sl

�sin���/2�X�sl

+ �1 − M�sl
�cos���/2�Y�sl

� , �A6�

Wg+
c�6� = −

G�sl
���cos ��

�X�sl
2 + Y�sl

2 �
��1 + M�sl

�cos���/2�X�sl

− �1 − M�sl
�sin���/2�Y�sl

� , �A7�

Wg−
c�6� =

G�sl
���

2�X�sl
2 + Y�sl

2 �sin ��
��1 − M�sl

�cos���/2�X�sl

− �1 + M�sl
�sin���/2�Y�sl

� . �A8�

Note that it differs by some constant factors from the
earlier expression given in Ref. �50� because the definition of
Wc has been modified from that of Ref. �29�.
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APPENDIX B: QDT FUNCTIONS IN SEMICLASSICAL
APPROXIMATION

In the classically allowed region, the base pair, defined by
Eqs. �10� and �11�, is given in the WKB approximation �see,
e.g., Ref. �41�� by

f�sl
c �rs� =

�2/��1/2

�ks�rs�
cos���sl

�rs� + �/4� , �B1�

g�sl
c �rs� =

�2/��1/2

�ks�rs�
sin���sl

�rs� + �/4� , �B2�

where

��sl
�rs� = lim

r0s→0
��

r0s

rs

ks�rs��drs� − y0� , �B3�

in which y0= �2 / ��−2��r0s
−��−2�/2, and ks�rs� is defined by Eq.

�7�.
For �s�0 and greater than the barrier height, one can

easily show, from the asymptotic behaviors of Eqs. �B1� and
�B2�, that the Zc matrix in the semiclassical theory is an
orthogonal matrix given by

Z̄c = �cos �̄l
c − sin �̄l

c

sin �̄l
c cos �̄l

c
� , �B4�

where �̄l
c is the semiclassical phase shift due to the long-

range potential, given by

�̄l
c = lim

rs→�
���sl

�rs� − ksrs + �l + 1/2��/2 + �/2� . �B5�

We have added a bar to the semiclassical quantities with
quantum counterparts to emphasize the fact that they can

differ substantially in the quantum regime. The �̄l
c in Eq.

�B4� does not become a good approximation to the quantum
long-range transmission phase �l

c, until the quantum Zc also

converges to the same form as Z̄c, namely not until Rl
c→0.

For �s�0, the wave function is still given by Eqs. �B1�
and �B2� in the classically allowed region to the left of the
turning point rts, defined by ks�rts�=0. Using the semiclassi-
cal connection formulas �see, e.g., Ref. �58��,

�1 

r
rt C

�k�r�
sin��

r

rt

k�r�dr + �/4�



r�rt C

2���r�
exp�− �

rt

r

��r�dr� �B6�

and

�2 

r
rt C

�k�r�
cos��

r

rt

k�r�dr + �/4�



r�rt C
���r�

exp�+ �
rt

r

��r�dr� �B7�

to propagate the wave functions to infinity, we obtain

W̄c = �D̄l cos �̄l
c − �1/D̄l�sin �̄l

c

D̄l sin �̄l
c �1/D̄l�cos �̄l

c
� , �B8�

where

�̄l
c = ��sl

�rts� , �B9�

and

D̄l��s� =
1
�2

lim
rs→�

exp��srs − �
rts

rs

�s�rs��drs�
 . �B10�

Again, the semiclassical quantities �̄l
c and D̄l do not become

good approximations to their quantum counterparts until the

quantum Wc converges to the same form as W̄c, namely not
until Ql

c→0.
Using Eqs. �B6� and �B7� to connect regions rs→0 and

rs→� in which the semiclassical theory is rigorously appli-
cable, we have the semiclassical connection formulas

f�sl
o+�rs� 


rs→0

�2/��1/2rs
�/4�1/D̄l

c�cos�y − �/4 + �̄l
c�



rs→� 1

���s

exp�− �srs� , �B11�

f�sl
o−�rs� 


rs→0

− �2/��1/2rs
�/4D̄l

c sin�y − �/4 + �̄l
c�



rs→� 1

���s

exp�+ �srs� , �B12�

that should be compared to the fully quantum results of Eqs.
�79� and �80�. We note that the semiclassical formulation
here is very similar to that given by Greene et al. �2,4�. The
slight differences are related to boundary conditions near the
origin.

APPENDIX C: FURTHER COMMENTS ON THE
STRUCTURE OF QDT FOR ��0

We discuss here some more subtle points as related to the
structure of QDT for ��0. In the Introduction, we stated that
Eq. �2� cannot generally be written in the form of Eq. �1�. To
be more precise, what we meant was that this cannot be done
without altering the characteristics of �l

�s� for being nearly
energy-independent. We show here that if we relax this cri-
terion, namely letting �l

�s� be energy-dependent as needed, we
can indeed recast the QDT for ��2, as presented in this
paper, to be in the same form as QDT for ��2 �1–4�. We
also discuss how the structural differences between ��2 and
��2 are reflected in such a formulation �9,18�.

Define two amplitues B and Bg and two phase shifts �l
f

and �l
g by

B = ��Zfs
c �2 + �Zfc

c �2�−1, �C1�

tan �l
f = − Zfc

c /Zfs
c , �C2�
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cos �l
f = B1/2Zfs

c , �C3�

and

Bg = ��Zgs
c �2 + �Zgc

c �2�−1, �C4�

tan �l
g = − Zgc

c /Zgs
c , �C5�

cos �l
g = �Bg�1/2Zgs

c . �C6�

Not all four parameters are independent, as det�Zc�=1 leads
to the constraint

�BBg�−1/2 sin��l
f − �l

g� = 1. �C7�

Further define a pair of reference functions f and g by

f�sl
�rs� 


rs→�� 2

�ks
�1/2

sin�ksrs − l�/2 + �l
f� , �C8�

g�sl
�rs� 


rs→�

− � 2

�ks
�1/2

cos�ksrs − l�/2 + �l
f� . �C9�

It is easy to show that f and g are related to fc and gc in
the standard QDT fashion, with fc and gc playing the role of
fo and go of Refs. �1,2,4�,

� f

g
� = � B1/2 0

B−1/2G B−1/2 �� fc

gc � , �C10�

where

G = − B cot��l
f − �l

g� . �C11�

Now if we define a phase shift �l
�s� using f and g as ref-

erence functions, namely by

u�l�r� = C�f�sl
�rs� − tan �l

�s�g�sl
�rs�� �C12�

for r�r0, we can write

Kl = tan �l = tan��l
f + �l

�s�� , �C13�

where

tan �l
�s� =

BKc

1 + GKc �C14�

with Kc playing the role of tan �l
�so�, or equivalently with our

�s=tan−1�Kc� playing the role of �l
�so� of Refs. �1,2,4�.

In this formulation, which is formally the same for �
�2 and ��2, the structural differences between ��2 and
��2 are reflected in the fact that whereas B and G, and
therefore �l

�s�, are slowly varying functions of energy for �
�2 �1–5�, they have rapid energy dependence through Zc in
the quantum region of Rl

c�0 for ��2. This energy depen-
dence means that, just like the other two formulations pre-
sented in the main text, we need three independent QDT
functions, B, G, and �l

f �9,18�, to fully characterize the quan-
tum region for ��2. In the semiclassical region of Rl

c→0,
where one can easily show that �l

f →�l
c, B→1, G→0, and

�l
�s�→�s, the number of independent functions reduces to

one, again just like in the other two formulations. We also
note that it has long been recognized by Watanabe and
Greene �9� that the rapid variation of B and G at small ener-
gies is due to “the penetration of the effective centrifugal
barrier,” a physical picture that is fully consistent with our
interpretation in terms of quantum reflection and transmis-
sion.

APPENDIX D: SEMICLASSICAL-QUANTUM
HYBRID THEORY

The quantum-connection formulas of Sec. V would seem
to suggest an improved semiclassical theory based on it. It is
indeed possible, but would be somewhat missing the point,
which is that if we already know the parameters that give the
quantum connection formulas, semiclassical theory is no
long necessary, at least not in the region of the long-range
potential.

A more useful approach is to use the semiclassical theory
to obtain the short-range parameters such as Kc or Sc, namely
use it inside r0, where its applicability is often well justified
especially in atom-atom or ion-atom interactions �simply be-
cause the atoms are moving much faster in the short-range
region�. All other aspects of the theory are kept the same as
those in Secs. VII and VIII, namely the propagation of the
wave function from r0 to infinity is done fully quantum me-
chanically. This semiclassical-quantum hybrid approach,
which has been taken, for example, by Gribakin and Flam-
baum in their study of ultracold atomic collisions �17,47�, is
useful over a much wider range of energies, and especially in
a multichannel formulation �29� to study inelastic processes
and other two-body reactions.

�1� C. H. Greene, U. Fano, and G. Strinati, Phys. Rev. A 19, 1485
�1979�.

�2� C. H. Greene, A. R. P. Rau, and U. Fano, Phys. Rev. A 26,
2441 �1982�.

�3� M. J. Seaton, Rep. Prog. Phys. 46, 167 �1983�.
�4� U. Fano and A. Rau, Atomic Collisions and Spectra �Aca-

demic, Orlando, FL, 1986�.
�5� M. Aymar, C. H. Greene, and E. Luc-Koenig, Rev. Mod. Phys.

68, 1015 �1996�.
�6� T. F. O’Malley, L. Spruch, and L. Rosenberg, J. Math. Phys. 2,

491 �1961�.
�7� R. J. Le Roy and R. B. Bernstein, J. Chem. Phys. 52, 3869

�1970�.
�8� N. A. W. Holzwarth, J. Math. Phys. 14, 191 �1973�.
�9� S. Watanabe and C. H. Greene, Phys. Rev. A 22, 158 �1980�.

�10� I. I. Fabrikant, Opt. Spektrosk. 53, 223 �1981�.
�11� F. H. Mies, J. Chem. Phys. 80, 2514 �1984�.
�12� F. H. Mies and P. S. Julienne, J. Chem. Phys. 80, 2526 �1984�.
�13� I. I. Fabrikant, J. Phys. B 19, 1527 �1986�.
�14� D. B. Khrebtukov, J. Phys. A 26, 6357 �1993�.

GENERAL FORM OF THE QUANTUM-DEFECT THEORY ... PHYSICAL REVIEW A 78, 012702 �2008�

012702-15



�15� M. J. Cavagnero, Phys. Rev. A 50, 2841 �1994�.
�16� P. S. Julienne and F. H. Mies, J. Opt. Soc. Am. B 6, 2257

�1989�.
�17� G. F. Gribakin and V. V. Flambaum, Phys. Rev. A 48, 546

�1993�.
�18� J. P. Burke, Jr., C. H. Greene, and J. L. Bohn, Phys. Rev. Lett.

81, 3355 �1998�.
�19� B. Gao, Phys. Rev. A 58, 1728 �1998�.
�20� B. Gao, Phys. Rev. A 58, 4222 �1998�.
�21� B. Gao, Phys. Rev. A 59, 2778 �1999�.
�22� B. Gao, Phys. Rev. Lett. 83, 4225 �1999�.
�23� B. Gao, Phys. Rev. A 62, 050702�R� �2000�.
�24� F. H. Mies and M. Raoult, Phys. Rev. A 62, 012708 �2000�.
�25� B. Gao, Phys. Rev. A 64, 010701�R� �2001�.
�26� M. Raoult and F. H. Mies, Phys. Rev. A 70, 012710 �2004�.
�27� B. Gao, Eur. Phys. J. D 31, 283 �2004�.
�28� B. Gao, J. Phys. B 37, 4273 �2004�.
�29� B. Gao, E. Tiesinga, C. J. Williams, and P. S. Julienne, Phys.

Rev. A 72, 042719 �2005�.
�30� E. Vogt and G. H. Wannier, Phys. Rev. 95, 1190 �1954�.
�31� Handbook of Mathematical Functions, edited by M.

Abramowitz and I. A. Stegun �National Bureau of Standards,
Washington, D.C., 1964�.

�32� V. M. Borodin, A. K. Kazansky, D. B. Khrebtukov, and I. I.
Fabrikant, Phys. Rev. A 48, 479 �1993�.

�33� C. Pan, A. F. Starace, and C. H. Greene, J. Phys. B 27, L137
�1994�.

�34� C. Pan, A. F. Starace, and C. H. Greene, Phys. Rev. A 53, 840
�1996�.

�35� S. J. Ward and J. H. Macek, Phys. Rev. A 62, 052715 �2000�.
�36� H. R. Sadeghpour, J. L. Bohn, M. J. Cavagnero, B. D. Esry, I.

I. Fabrikant, J. H. Macek, and A. R. P. Rau, J. Phys. B 33, R93
�2000�.

�37� F. Shimizu, Phys. Rev. Lett. 86, 987 �2001�.
�38� H. Friedrich, G. Jacoby, and C. G. Meister, Phys. Rev. A 65,

032902 �2002�.
�39� H. Friedrich and A. Jurisch, Phys. Rev. Lett. 92, 103202

�2004�.
�40� T. A. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D.

E. Pritchard, and W. Ketterle, Phys. Rev. Lett. 93, 223201
�2004�.

�41� L. D. Landau and E. M. Lifshitz, Quantum Mechanics �Perga-
mon, Oxford, 1977�.

�42� E. J. Williams, Rev. Mod. Phys. 17, 217 �1945�.
�43� S. M. Kirschner and R. J. Le Roy, J. Chem. Phys. 68, 3139

�1978�.
�44� J. Trost, C. Eltschka, and H. Friedrich, J. Phys. B 31, 361

�1998�.
�45� C. Boisseau, E. Audouard, and J. Vigué, Europhys. Lett. 41,

349 �1998�.
�46� J. Trost, C. Eltschka, and H. Friedrich, Europhys. Lett. 43, 230

�1998�.
�47� V. V. Flambaum, G. F. Gribakin, and C. Harabati, Phys. Rev. A

59, 1998 �1999�.
�48� C. Boisseau, E. Audouard, J. Vigué, and V. V. Flambaum, Eur.

Phys. J. D 12, 199 �2000�.
�49� R. Côté, E. J. Heller, and A. Dalgarno, Phys. Rev. A 53, 234

�1996�.
�50� Y. Chen and B. Gao, Phys. Rev. A 75, 053601 �2007�.
�51� H. Poincaré, Acta Math. 4, 201 �1884�.
�52� C. J. Joachain, Quantum Collision Theory �North-Holland,

Amsterdam, 1975�.
�53� B. Gao, J. Phys. B 37, L227 �2004�.
�54� B. Gao, J. Phys. B 36, 2111 �2003�.
�55� K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, Rev.

Mod. Phys. 78, 483 �2006�.
�56� B. Gao, Phys. Rev. Lett. 95, 240403 �2005�.
�57� B. Gao �unpublished�.
�58� M. S. Child, Molecular Collision Theory �Dover, Mineola, NY,

1996�.

BO GAO PHYSICAL REVIEW A 78, 012702 �2008�

012702-16


