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Rotational structures of long-range diatomic molecules
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Abstract. We present a systematic understanding of the rotational structure of a long-range (vibrationally
highly-excited) diatomic molecule. For example, we show that depending on a quantum defect, the least-
bound vibrational state of a diatomic molecule with −Cn/rn (n > 2) asymptotic interaction can have only
1, 2, and up to a maximum of n − 2 rotational levels. A classification scheme of diatomic molecules is
proposed, in which each class has a distinctive rotational structure and corresponds to different atom-atom
scattering properties above the dissociation limit.

PACS. 33.15.Mt Rotation, vibration, and vibration-rotation constants – 34.10.+x General theories and
models of atomic and molecular collisions and interactions (including statistical theories, transition state,
stochastic and trajectory models, etc.) – 03.75.Nt Other Bose-Einstein condensation phenomena – 03.75.Ss
Degenerate Fermi gases

1 Introduction

How fast can we rotate a molecule before breaking it [1,2]?
How does a rotational series terminates at the dissociation
limit? How many rotational levels are there for a diatomic
molecule in its last (least-bound), or next-to-last, vibra-
tional state? These intriguing, and closely related, ques-
tions are taking on a new dimension of practical impor-
tance as our ability to make large samples of long-range
molecules (vibrational highly-excited molecules) [3–13],
and even condensates of long-range molecules [14–16], con-
tinues to grow. To understand the properties of a long-
range molecule, especially how it responds to external per-
turbations such as collision with other atoms, we need not
only the properties of a particular molecular state, such
as the least-bound s state. We also need to know what are
the states around it. It is this global structure of states
that is the focus of this work.

One approach to this problem is to compute the uni-
versal spectra for each type of long-range interaction,
−Cn/rn, as we have done previously for n = 6 [17,18]
and n = 3 [19], and simply observe them. This would,
however, be very tedious and can never be completely in-
clusive. Our approach here is based on the recognition that
the global structure of states, not including specific val-
ues for binding energies, depends only on the zero-energy
wave function, more specifically, on its number of nodes as
a function of both the angular momentum quantum num-
ber l and the exponent n characterizing the long-range
interaction.
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Our results, and answers to the questions raised above,
can be summarized in two simple formulas that will be
derived later in the article. The first gives the dependence
of the number of bound levels on the angular momentum l
for a quantum system with −Cn/rn (n > 2) long-range
interaction

Nl = Int
[
N0 + µc − 1

n − 2
l

]
. (1)

Here Int[x] represents the greatest integer less than or
equal to x. Nl is the number of bound levels of angular
momentum l. N0 is the number of s wave bound levels. µc

is a quantum defect, to be defined later, that has a range
of 0 ≤ µc < 1.

The second formula relates the quantum defect to the
s wave scattering length

a0s = ā0s
tan(πµc) + tan(πb)

tan(πµc)
. (2)

Here a0s = a0/βn is the s wave scattering length, a0,
scaled by the length scale βn = (2µCn/�

2)1/(n−2) associ-
ated with the long-range interaction; b = 1/(n − 2); and

ā0s = cos(πb)
[
b2b Γ (1 − b)

Γ (1 + b)

]
, (3)

is the mean s wave scattering length of Gribakin and
Flambaum [20], scaled by βn.

The consequences of these results are easily understood
and are discussed in Section 3. Equation (1) is derived in
Section 2. It is another example of universal properties
at length scale βn, as discussed in a more general terms
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in two recent publications [21,22]. This universal prop-
erty is followed by all molecules in varying degrees. Devi-
ations from it and other issues are discussed in Section 4.
A primer of the angular-momentum-insensitive quantum-
defect theory (AQDT) [17,18], which is the foundation of
this work, can be found in Appendix A.

2 Derivation of equation (1)

Equation (1) may be derived using two different methods.
One is to apply AQDT [17,18], the version for arbitrary
n > 2 as outline in [21] and Appendix A, to the zero-
energy diatomic state. This approach is discussed briefly
in Appendix A. The other approach is the method of ef-
fective potential [21,22]. It is this latter method that we
present here, for the purpose of further promoting this
powerful concept. While it makes no difference in this par-
ticular case, for more complex systems, such as quantum
few-body or quantum many-body systems [22] where no
analytic solutions are available, the method of effective po-
tential may be the only way to uncover universal proper-
ties at different length scales. The results would, of course,
be mostly numerical in those cases. But a numerical solu-
tion done right can indeed yield universal behavior [22].

The method of effective potential is very simple. It
states that for a physical observable that depends only on
states around the threshold, such as the number of nodes
of the zero-energy wave function that we are looking at
here, its universal behavior at length scale βn can be de-
rived from any potential that has the right asymptotic be-
havior and is strongly repulsive at short distances. Specifi-
cally, a universal result at length scale βn is obtained from
the corresponding result for an effective potential by tak-
ing a proper limit that eliminates the shorter length scales
while keeping the short-range K matrix, Kc(0, l) ([17] and
Appendix A), to be a constant for one particular l [21,22].

We take here, for simplicity, a hard-sphere with an
attractive tail (HST),

VHST(r) =

{∞ , r ≤ r0

−Cn/rn , r > r0

, (4)

as our effective potential. Its number of bound levels for
angular momentum l is given by ([21] and Appendix A)

NHST(l) =

{
m , jν0,m ≤ y0 < jν0,m+1

0 , y0 < jν0,1

, (5)

where y0 = [2/(n−2)](βn/r0)(n−2)/2, ν0 = (2l+1)/(n−2),
and jν0,m (m ≥ 1) is the mth zero of the Bessel function
Jν0(x) [23].

Its Kc parameter at zero energy is given by ([21] and
Appendix A).

Kc
HST(0, l) = −Jν0(y0) cos(πν0/2) − Yν0(y0) sin(πν0/2)

Jν0(y0) sin(πν0/2) + Yν0(y0) cos(πν0/2)
,

(6)
where J and Y are the Bessel functions [23].

In the limit of r0 → 0+ that eliminates the shorter
length scale (see [22] for a more precise definition), y0 � 1,
and the roots of the Bessel function are given by [24]

jν0,m → (m + ν0/2 − 1/4)π. (7)

Kc
HST(0, l) becomes an l-independent constant

Kc
HST(0, l) → Kc = tan(y0 + π/4). (8)

Defining the quantum defect, µc(ε, l), to be a parameter
in a range of 0 ≤ µc < 1 and related to Kc by

Kc(ε, l) = tan
[
πµc(ε, l) +

π

2(n − 2)

]
, (9)

it is clear that µc
HST(0, l) also becomes an l-independent

constant

µc
HST(0, l) → µc =

y0

π
+

1
4
− 1

2(n − 2)
− j, (10)

where j is an integer chosen such that µc falls in the range
of 0 ≤ µc < 1.

Combining these results, the number of bound levels of
angular momentum l for a HST potential can be written
in the limit of r0 → 0+ as

NHST(l) → m, m ≤ j + µc − 1
n−2 l < m + 1, (11)

or,

NHST(l) r0→0+−→ Int
[
j + µc − 1

n − 2
l

]
. (12)

Note that the result on the right-hand-side of this equation
is now no longer just a property of the HST potential, but
a universal property at length scale βn, applicable to any
quantum system with the same long-range behavior and
has a βn that is much longer than other length scales in
the system [21,22].

Since 0 ≤ µc < 1, the integer j in equation (12) is
simply the number of bound levels for l = 0. Equation (1)
is thus derived. It is easy to show that starting from a
Lennard-Jones LJ(n, 2n − 2) effective potential [21] (see
also Sect. 4.2) leads to identical result. And again, the
same result can also be derived by applying AQDT to the
zero-energy diatomic state, as outlined in Appendix A.

This derivation illustrates one of the key differences
between the method of effective potential [21,22] and the
pseudopotential method [25]. In the latter method, a dif-
ferent pseudopotential is required for each partial wave.
And each pseudopotential has at least one independent
parameter to characterize the scattering of that particu-
lar partial wave. Without another theory relating scatter-
ing of different partial waves, no universal l-dependence of
any kind can be established. (This is in addition to its well
known limitations in describing bound states.) In contrast,
a single effective potential is used to describe all l. This
is possible because a single parameter in AQDT describes
a multitude of angular momentum states (see [17,18] and
Appendix A). Put it in another way. Scattering of differ-
ent partial waves are related, and so are the bound spectra
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Table 1. Classification of diatomic molecules with −Cn/rn (n > 2) long range interaction using quantum defect. Here Lmax,v

is the maximum rotational quantum number for the vibrational state v. ∆v = vmax − v. a0s = a0/βn is the scaled s wave
scattering length. Note that some of the rotational states may be excluded for identical particles. Also note that scattering
length has no definition for n = 3.

Class j Range of µc Lmax,v(j) Range of a0s

0 0 ≤ µc < b 0 + (n − 2)∆v 2ā0s < a0s ≤ ∞
1 b ≤ µc < 2b 1 + (n − 2)∆v

...
...

...
...

...

n − 3 (n − 3)b ≤ µc < 1 n − 3 + (n − 2)∆v −∞ < a0s ≤ 0

of different partial waves. These relations are determined
by the long-range interaction ([17,18] and Appendix A),
and are incorporated automatically in an effective poten-
tial [21]. The universal property described by equation (1)
is but one reflection of the resulting systematics.

3 Classification of molecules using quantum
defect

Let us first state that we do not include explicitly the
effect of statistics when atoms are identical. It would make
our statements unnecessarily complex without introducing
any new physics. In specific applications, all one needs to
do is to exclude states that cannot satisfy the symmetry
requirement (see, for example, [26]), as needed.

The physical implications of equation (1) can be eas-
ily understood by noting that N0 − 1 is the maximum
vibrational quantum number, vmax, while Nl − 1 is the
maximum vibrational quantum number, vmax,l, that can
support a rotational state of angular momentum l. A vi-
brational state v can have all l for which vmax,l ≥ v.
Let Lmax,v to be the maximum rotational quantum num-
ber for vibrational state v. From equation (1), it is the
maximum l that can satisfy

v = Int
[
vmax + µc − 1

n − 2
l

]
, (13)

which gives

Lmax,v = (n − 2)(vmax − v) + Int [(n − 2)µc] . (14)

This result suggests the classification of molecules into
n − 2 classes, each corresponding to an equal interval of
b = 1/(n − 2) in the quantum-defect space. For Class j
with jb ≤ µc < (j + 1)b, where 0 ≤ j ≤ n − 3, we have
j ≤ (n − 2)µc < j + 1, and therefore

Lmax,v(j) = j + (n − 2)(vmax − v). (15)

Thus each class of molecules corresponds to a unique rota-
tional structure that terminates at Lmax,v(j). This classi-
fication is summarized in Table 1. In particular, it means
that the least-bound vibrational state can have 1 (Class 0),
2 (Class 1), and up to a maximum of n − 2 (Class n − 3)
rotational levels, depending on the quantum defect of the

molecule. For the next-to-last vibrational state, add n− 2
rotational levels to each class, and so on for lower vibra-
tional states.

What makes this classification useful is that each class
not only has a distinctive rotational structure, it also cor-
responds to distinctive atom-atom scattering properties
above the dissociation limit. In particular, each class of
molecules corresponds to a distinctive (non-overlapping)
range of scattering length, which can be determined from
equation (2) and is summarized in Table 1.

Equation (2) is derived from the definition of the mean
scattering length [20], equation (3), the definition of the
quantum defect, equation (9), and the following rigorous
relation between Kc and the s wave scattering length ([21]
and Appendix A)

a0s =
[
b2b Γ (1 − b)

Γ (1 + b)

]
Kc(0, 0) + tan(πb/2)
Kc(0, 0) − tan(πb/2)

, (16)

which is similar to the relation between scattering length
and a semiclassical phase as derived by Gribakin and
Flambaum [20]. These equations combine to give

a0s = ā0s
tan[πµc(0, 0)] + tan(πb)

tan[πµc(0, 0)]
, (17)

which is the exact relation between the scattering length
and the quantum defect. It is the more rigorous represen-
tation of equation (2), applicable even when the system
deviates from the universal behavior (see Sect. 4.3 and
Appendix A).

With the correspondence between quantum defect and
scattering length, our classification of molecules can trans-
late into other general statements, such as, (a) the least-
bound vibrational state of a diatomic molecule with a0s ≥
2ā0s has only a single rotational state. (b) The least-bound
vibrational state of a diatomic molecule with negative
scattering length has n − 2 rotational states. It is worth
noting that molecules with negative scattering length all
fall into a single class, Class n − 3, while molecules with
positive scattering length separate into n−3 classes, from
Class 0 to Class n − 4. A similar feature was first noted
by Gribakin and Flambaum [20].

The different scattering properties for different classes
are not restricted to the s wave. In fact, more interesting
differences occur for higher partial waves. For example,
Class 0 does not have a p wave bound state for the last vi-
brational level. This p state, which would have been bound
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for µc ≥ b, does not disappear completely. It shows itself
as p wave shape-resonance above the threshold, which be-
comes infinitely narrow (infinitely long-lived) as one ap-
proaches µc = b from the side of Class 0. In general, a
Class j system, 0 ≤ j ≤ n − 3, is the one that has a
shape-resonance of l = j + 1 closest to the threshold. The
detailed properties of these resonances are however beyond
the scope of this article (see, e.g. [17,27–29]).

The critical values of µc = jb, 0 ≤ j ≤ n − 3, that
are the boundaries between different classes correspond to
having bound or quasibound states of angular momenta
l = j +(n−2)m (m being a non-negative integer) right at
the threshold (Appendix A). They have vibrational quan-
tum numbers of v = vmax − m, respectively. This is a
generalization of some of the results in [18] to the case of
arbitrary n > 3. Note that the wave functions for zero-
energy bound or quasibound states are well defined and
are given in the region of long-range potential by (Ap-
pendix A)

uε=0l(r) = Ar1/2
s Jν0(y), (18)

where rs = r/βn is a scaled radius, and y = [2/(n −
2)]r−(n−2)/2

s . This wave function has an asymptotic
behavior of 1/rl at large r, thus representing a true, nor-
malizable, bound state for l > 0, and a quasibound (not
normalizable) state for l = 0. The fact that the s-wave
wave function in the effective-range theory becomes com-
pletely meaningless when a0 = ∞ is only a limitation
of that particular theory, not a reflection of any physical
reality.

4 Discussions

We discuss here some special cases, deviations from the
universal behavior, and how they might be treated.

4.1 The case of n = 3

Our results, equations (1) and (15), are applicable to
n = 3, even though the scattering length has no definition
in this case (for any l) [30,31]. Specifically, equation (15)
predicts that quantum systems with n = 3 have only a sin-
gle class (Class 0) with Lmax,v = vmax−v. In other words,
the last vibrational state for n = 3 has only a single rota-
tional state, an s state. The next-to-last vibrational state
has two rotational levels, and so forth. This prediction
is confirmed by the analytic solution for −C3/r3 poten-
tial [19,31].

4.2 The special case of LJ(n, 2n − 2) potentials

For a set of Lennard-Jones potentials LJ(n, 2n−2) (n > 2)
defined by

VLJn(r) = −Cn/rn + C2n−2/r2n−2, (19)

the number of bound levels for any l is given by ([21] and
Appendix B)

NLJn(l) =

{
Int

[
z0 + 1

2 − ν0
2

]
, z0 ≥ (ν0 + 1)/2

0 , z0 < (ν0 + 1)/2
, (20)

where ν0 = (2l+1)/(n−2) and z0 = (βn/β2n−2)n−2/[2(n−
2)], in which β2n−2 is the length scale associated with the
C2n−2/r2n−2 interaction. Thus for a LJ(n, 2n − 2) po-
tential, the universal dependence of the number of bound
levels on l, as specified by equation (1), is exact, true even
when β2n−2 is comparable to βn and the corresponding
potential is so shallow as to support only a single or a few
bound states.

This result implies that to break the universal depen-
dence on l, one needs not only a short-range interaction,
but the behavior of this interaction also has to be different
from LJ(n, 2n− 2).

4.3 Deviations from the universal behavior

The key to understand qualitatively the deviation from
the universal behavior is to recognize the origin of this uni-
versality. The universal l-dependence originates from the
l-independence of Kc(0, l) ([17] and Appendix A), which is
a result of both the small mass ratio me/µ, where me is the
electron mass and µ is the reduced mass of the molecule
(not to be confused with the quantum defect µc), and the
condition of βn � r0 where r0 is a representative of other
length scales in the system. It is typically the range of ex-
change interaction with a magnitude around 20−60 a.u.

With this understanding, it is clear that the univer-
sal behavior of equation (1) should be followed by all
molecules to some degree. The mass ratio me/µ is always
small and can be taken for granted. (This is why we don’t
always mention it.) And almost by definition, βn is the
longest length scale in the problem, otherwise it would
not, and should not have been called the long-range inter-
action.

It is also clear that the universal behavior is best
followed by the states with highest vibrational quan-
tum numbers. For example, consider our prediction of
Lmax,v(j) = j + (n − 2)(vmax − v). For the least-bound
vibrational state with v = vmax, it would only require l-
independence of Kc over a range of ∆l = n−2. In compar-
ison, the same result applied to v = vmax−9 would require
l-independence of Kc over 10 times that range, which gen-
erally becomes considerably worse (depending also on n,
and other details of the short-range interaction).

As far as predictions for the last few vibrational states
(long-range molecules) are concerned, there is no need to
worry about deviation except when µc is very close to
one of the critical values of µc = jb, where a small l-
dependence may mean the difference between a bound
state and a shape resonance.

When necessary, deviations from the universal behav-
ior can be treated within the AQDT framework. All we
need is to count the nodes of the zero-energy wave func-
tions more carefully. As discussed in Appendix A, AQDT
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is an exact formulation and an excellent platform for exact
numerical calculations. This also applies to node-counting:
integrate the Schrödinger equation at zero energy and
count the nodes up to a distance where Kc(0, l) has con-
verged to a desired accuracy [one computes Kc(0, l) by
matching the integrated wave function to that given by
Eq. (A.8) at different radii r. As a function of this match-
ing radius, Kc(0, l) converges to a r-independent constant
when the potential becomes −Cn/rn and the wave func-
tion becomes that of Eq. (A.8)]. Adding to that the num-
ber of nodes beyond this distance, which can now be cal-
culated analytically, gives one the total number of nodes.

One could also try to find if there are any systematics
in the deviation by going to the next, shorter, length scale.
Any such attempt would however be necessarily system-
specific and will be deferred to specific applications. Ex-
amples of the universal rotational structure for n = 6 can
already be found in [17,18], though they were not dis-
cussed explicitly. It was the simple structures observed
there that motivated this work.

5 Conclusion

In conclusion, we have shown that the rotational struc-
ture of a long-range molecule follows a simple universal
behavior that is characterized by two parameters, the ex-
ponent n of the long-range interaction −Cn/rn, and a
quantum defect, which is related in a simple way to the s
wave scattering length whenever the latter is well defined
(n > 3). The resulting classification scheme gives a simple
qualitative description of both the rotational structure of
a long-range molecule and the corresponding atom-atom
scattering properties above the dissociation threshold.

Finally, getting back to one of the questions at the
beginning that we have not answered explicitly: how fast
can we rotate a molecule before breaking it? The answer
is, of course, Lmax,v units of angular momenta, which is
generally a very small number for long-range molecules.

I thank Michael Cavagnero, Eite Tesinga, Paul Julienne, and
Carl Williams for helpful discussions. This work was supported
by the National Science Foundation under the Grant number
PHY-0140295.

Appendix A: AQDT: a primer

We give here a brief review of the angular-momentum-
insensitive quantum defect theory (AQDT) [17,18]. The
focus will be on the conceptual aspects, and issues directly
related to this particular work. We point out that there are
a number of different quantum-defect formulations for di-
atomic systems [26,32–35]. There are also quantum-defect
analysis [36,37], and numerical methods that incorporate
the concepts of quantum-defect theory [38]. Only our for-
mulation is briefly reviewed here.

Consider a radial Schrödinger equation[
− �

2

2µ

d2

dr2
+

�
2l(l + 1)
2µr2

+ V (r) − ε

]
uεl(r) = 0, (A.1)

where V (r) becomes −Cn/rn beyond a distance r0, which
corresponds typically to the range of exchange interaction
with a magnitude around 20−60 a.u.

In AQDT, the wave function in the region of long-range
interaction (r ≥ r0) is written as a linear superposition of
a pair of reference functions

uεl(r) = Aεl[f c
εsl(rs) − Kc(ε, l)gc

εsl(rs)], (A.2)

which also serves to define the short-range K matrix
Kc(ε, l). The functions f c and gc are solutions for the long-
range potential −Cn/rn [31,39]. Their notations reflect
the fact that with proper scaling and normalization, f c

and gc depend on r only through a scaled radius rs = r/βn

and on energy only through a scaled energy [31,39]

εs =
ε

(�2/2µ)(1/βn)2
. (A.3)

Note that for the purpose of cleaner notion for arbitrary n,
we have abandoned the factor of 16 used previously for
n = 6 [17,18,28,39], and the factor of 4 used previously
for n = 3 [19,31].

Much of the art of a quantum defect theory [40–43]
is in choosing f c and gc that best reflect the underlying
physics. For a molecule, the wave function at short dis-
tances is nearly independent of l because the rotational
energy is small compared to electronic energy (originated
from the small mass ratio me/µ). AQDT takes advantage
of this fact by picking a pair of solutions for −Cn/rn po-
tential that have not only energy-independent, but also l-
independent behavior at short distances (possible because
n > 2) [17,21,22]:

f c
εsl(rs)

r�βn−→ (2/π)1/2rn/4
s cos (y − π/4) , (A.4)

gc
εsl(rs)

r�βn−→ −(2/π)1/2rn/4
s sin (y − π/4) , (A.5)

where y = [2/(n − 2)]r−(n−2)/2
s .

With this choice of reference pairs, matching to wave
function at short distances yields an Kc that is nearly
independent of l, provided that r0 is much smaller than βn

so that the reference functions at r0 are well represented
by their l-independent form of equations (A.4–A.5).

An approximately l-independent Kc thus reflects the
underlying physics that while the angular momentum de-
pendence is very important for long-range molecules and
atom-atom scattering at low energies, it is important only
at large distances where its effects can be incorporated
analytically. This is the physical origin of why a single
parameter in AQDT is often capable of describing a mul-
titude of angular momentum states [17,18,21].

The approximate energy-independence of Kc, under
the same condition of βn � r0 is fairly standard [40,42].
It is both because the reference functions have been chosen
to be energy-independent at short distances, and because
the short-range wave function varies with energy on a scale
of (�2/2µ)(1/r0)2, much greater than the corresponding
energy scale associated with the long-range interaction,
which is (�2/2µ)(1/βn)2 [19].
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In a multichannel theory that takes into account the
hyperfine structures of atoms (starting from the formula-
tion in [26]), the concepts of AQDT, and the concept of
l-independence in particular, remain unchanged and lead
to an even greater reduction in the number of parame-
ters required for a complete characterization of the sys-
tem [44,45].

We emphasize that AQDT is an exact formulation that
does not require either the energy-independence or the l-
independence of Kc. It is simply a good framework, espe-
cially conceptually, to take advantage of them when they
are there (βn � r0). The parameterizations that we often
use to extract universal behaviors should not distract from
the fact that AQDT also provides an excellent platform for
exact numerical calculations, whether single channel [21]
or multichannel. This is especially true close to the dis-
sociation limit, where matching to analytic solutions for
−Cn/rn potential to obtain Kc(ε, l) converges much faster
than matching to free-particle solutions to obtain the stan-
dard K matrix. The calculations in [21] are all based on
this platform.

A major task of AQDT is, of course, finding the refer-
ence functions. This is in general highly nontrivial [31,39],
especially analytically. No solution is yet available for
n = 5 at ε �= 0. This difficulty is however not a problem
here as we need only the zero-energy reference functions,
which can be easily found for arbitrary n and l [17,46]

f c
εs=0l(rs) = [2/(n − 2)]1/2r1/2

s [Jν0(y) cos(πν0/2)

− Yν0(y) sin(πν0/2)], (A.6)

gc
εs=0l(rs) = −[2(n − 2)]1/2r1/2

s [Jν0(y) sin(πν0/2)

+ Yν0(y) cos(πν0/2)], (A.7)

where ν0 = (2l+1)/(n−2). With these reference functions,
the zero-energy wave function can be written either as

uε=0l(r) = Al[f c
εs=0l(rs) − Kc(0, l)gc

εs=0l(rs)], (A.8)

or as

uε=0l(r) = A′
lr

1/2
s [Jν0(y) cos(αl) + Yν0(y) sin(αl)], (A.9)

where αl = π[µc(0, l)−lb] with the quantum defect µc(ε, l)
being defined in terms of Kc(ε, l) by equation (9).

The parameters Kc and µc both represent the same
physics. Kc is more convenient in computation, while µc is
able to represent all quantum systems in a finite parameter
space of [0, 1). In comparison, Kc can take any value from
−∞ to +∞.

Equation (5) is a result of node-counting the wave
function, given exactly by equation (A.9), from r0 to
infinity (y = 0 to y0) [24]. Equation (6) is obtained by im-
posing the boundary condition uε=0l(r = r0) = 0. Equa-
tion (16) is obtained by comparing the asymptotic behav-
ior of uε=0l(r) (for l = 0) at large r with the corresponding
expansion that defines the s wave scattering length.

uε=0l=0(r) → A(r − a0). (A.10)

The derivation of equation (1) in AQDT is straightfor-
ward. In the limit of r0 � βn, the number of nodes of the
zero-energy wave function inside r0 is an l-independent
constant [to a degree measured by the l-independence of
Kc(0, l)]. Counting the number of nodes of the outside
wave function, equation (A.9), from r0 to infinity (y = 0
to y0) [24], and ignoring the l-dependence of µc(0, l) leads
to equation (1). From this derivation, it is clear that de-
viation from the universal behavior is measured by the
degree to which µc(0, l) or Kc(0, l) is independent of l.

Having a bound or quasibound state right at the
threshold corresponds to the boundary condition of
uε=0l(r) → 0 (or a finite constant for l = 0) in the limit of
r → ∞. Define

xl(ε) ≡ tan [πµc(ε, l) − πlb] . (A.11)

From equation (A.9), the condition for a bound state at
the threshold is clearly

xl(0) = tan[πµc(0, l) − πlb] = 0, (A.12)

which translates into µc(0, l) = jb, 0 ≤ j ≤ n − 3, for
having bound or quasibound states of angular momenta
l = j + (n − 2)m (m being a non-negative integer) right
at threshold, with corresponding wave functions given by
equation (18). In terms of Kc, the same condition takes
the form of

Kc(0, l) = tan
[

1
n − 2

(
l +

1
2

)
π

]
, (A.13)

which is a generalization of the condition in [18] to the
case of arbitrary n. Note that the conditions expressed in
the form of equations (A.12, A.13) are exact, with no as-
sumption on the l-independence of either parameter. The
universal behavior corresponds to when the l-dependence
can be ignored (βn � r0).

The xl(ε) parameter defined by equation (A.11) has
also other applications. For example, for µc(0, l) � jb,
xl(0) � 0 is a convenient expansion parameter for describ-
ing bound states of angular momenta l = j + (n − 2)m
(m being a non-negative integer) that are close to the
threshold. xl(ε) is also closely related to the K0

l (ε) ma-
trix used in reference [28], simply by K0

l (ε) = −xl(ε).
With this relation, all the results of reference [28] can be
rewritten in terms of either Kc or µc. Making use of the
l-independence of either parameter in these results can
lead, for example, to a relation between the p wave and
the s wave scattering lengths.

Reference [28] offers a lesson on the importance of pick-
ing reference functions. The f0 and g0 functions in ref-
erences [28,39], which define K0, differ from f c and gc

only by a linear transformation. But because the result-
ing K0

l (ε) = − tan[πµc(ε, l) − πlb] did depend on l, rela-
tionships among scattering and bound spectra of different
partial waves were not recognized until much later [17,18].
Reference [28] was only able to take advantage of the
energy-independence of K0

l to show, for example, that the
effective range and the scattering length are not indepen-
dent, but are related in a way determined by the long-
range interaction. The same conclusion was also reached
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independently by Flambaum et al. using a different ap-
proach [47].

Appendix B: Derivation of the results
for LJ(n, 2n − 2) potentials

The analytic results for NLJn(l), equation (20), and
Kc

LJn(0, l) given in reference [21] [and therefore µc
LJn(0, l),

and of course a0s] are derived from the zero-energy solu-
tion of the radial Schrödinger equation, equation (A.1), for
the class of potentials defined by equation (19). Instead of
giving all the tedious mathematical details, we will simply
note its relationship to the harmonic oscillator solution, as
they have the same underlying mathematical structure.

Upon a transformation x = (r/βn)α and ul(r) =
x−(α−1)/(2α)vl(x) with α = −(n−2)/2, the corresponding
equation at zero energy becomes

[
− �

2

2µ

d2

dx2
+

�
2γ(γ + 1)

2µx2
+

1
2
µω2x2 − Ee

]
vl(x) = 0,

(B.1)
with γ + 1/2 = [2/(n − 2)](l + 1/2). Thus for the class of
potentials given by equation (19), the solution of the ra-
dial Schrödinger equation at zero energy is equivalent to
the solution of a 3-D isotropic harmonic oscillator with an
effective angular momentum γ, a effective frequency deter-
mined by �ω = (�2/2µ)(2/|α|)(β2n−2/βn)n−2(1/βn)2, at
an effective energy (not zero) Ee = (�2/2µ)(1/α2)(1/βn)2.
From this correspondence, both results are easily deduced.
For example, the number of bound levels is simply the
number of harmonic oscillator levels below, and includ-
ing Ee.
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