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Theoretical calculations of the two-photon ionization cross section of argon and of the two-
photon detachment cross section of the negative fluorine ion are presented for the energy region
from threshold to the single-photon ionization or detachment threshold. Detailed analyses are
presented of the effects of various kinds of electron correlations, whose contributions to the two-
photon transition amplitudes are evaluated using variationally stable procedures to sum implicitly
over intermediate states. These variationally stable procedures enable us to give much more reliable
predictions in the region of the first few intermediate-state resonances in argon than were provided
by previous calculations of one of us [A.F. Starace and T. F. Jiang, Phys. Rev. A 36, 1705 (1987)].
In addition, we show here for both argon and F~ the large corrections to the p ('S) final-state chan-
nel cross sections provided by certain intermediate-state shake-up interactions, which we show to be
essential for obtaining good agreement of dipole length and velocity cross sections. We provide de-
tailed comparisons of our results with those of previous workers; in particular, our results for the
negative fluorine ion are in excellent agreement with the recent absolute measurement of Kwon

et al. [Phys. Rev. A 40, 676 (1989)].

1. INTRODUCTION

The explosive growth over the past decade in the num-
ber of experimental studies of intense laser-atom interac-
tions has been a strong stimulus for corresponding
theoretical studies on multiphoton ionization (MPI) pro-
cesses.! In particular, the experimental observations of
unusually large numbers of multiply charged ions pro-
duced by MPI of the rare gases®? (among other targets),
together with the interpretation that successive stages of
ionization occur sequentially,* has led to a corresponding
growth in the number of theoretical studies of low-order
MPI processes for the rare gases.’ !> This theoretical in-
terest has extended also to negative ions which are
isoelectronic to the rare gases, i.e., the negative hydrogen
ion'®!” and the negative halogen ions.'*~2! It has been
stimulated further by recent wavelength-dependent ex-
perimental measurements of low-order MPI cross sec-
tions for the rare gases,?>?® the negative hydrogen ion,**
and the negative halogen ions.”>~%7

In every case, the theoretical calculations referred to
above have confronted some key difficulties inherent in
describing low-order MPI processes for the rare gases
and the negative ions isoelectronic to them. First, there
is the problem of maintaining numerical accuracy while
summing over one or more complete sets of intermediate
states. This problem is usually most severe in the neigh-
borhood of intermediate-state resonances, which strongly
influence MPI cross sections in the rare gases. A com-
mon theoretical procedure which avoids explicit summa-
tion over intermediate states is to solve instead an inho-
mogeneous differential equation.’®*?® The instability of
the solutions of this inhomogeneous differential equation
near intermediate-state resonances may be addressed by
removing these resonances using projection operator
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techniques.’® Their effect on the transition amplitude is
then calculated separately. For all but the lowest-energy
resonances, however, this procedure can be cumbersome.

A second problem is that of representing the atomic
states realistically and, in particular, taking into account
effects of electron correlations. For the negative halogen
ions, Crance!® has shown that the multiphoton detach-
ment cross sections obtained using a plane-wave repre-
sentation for the detached electron are often two to three
times larger than those obtained using the more accurate
LS-dependent Hartree-Fock representation for the de-
tached electron. For the rare gases, a number of theoreti-
cal studies®®!%1271% have demonstrated that electron
correlations can influence two-photon ionization cross
sections by a factor of 2 or so, particularly near
intermediate-state resonances. It is to be expected that
such effects of electronic correlations will be magnified
for higher-order MPI cross sections.

In this paper we address both of these difficulties by
employing variationally stable procedures to obtain the
two-photon ionization cross section for argon as well as
the two-photon detachment cross section for F~. These
procedures are employed to calculate perturbation matrix
elements which account in detail for effects of electron
correlations, particularly in the vicinity of intermediate-
state resonances (in the case of argon). The use of varia-
tional methods for the calculation of observables of
second order in some perturbation, such as polarizabili-
ties’! and energy corrections,’? has been common since
the 1950s and more recently has been used for the calcu-
lation of second-order scattering amplitudes.>®> Most re-
cently, Gao and Starace™ introduced a new variational
method for the calculation of perturbative processes of
high order. Their calculations for multiphoton processes
in atomic hydrogen of up to 11th order exhibited excel-
lent numerical stability and accuracy even near
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intermediate-state resonances.>* The present work ap-
plies such variational methods to multiphoton processes
involving nonhydrogenic targets.

In Sec. II we discuss the variationally stable methods
we have used to calculate the most important electron
correlation effects on the two-photon ionization cross sec-
tion of Ar and the two-photon detachment cross section
of F~. We discuss, in particular, the accurate treatment
of certain electron scattering interactions which have
been found previously to affect significantly the two-
photon ionization cross sections of argon'? and xenon.'?
In addition, we discuss certain intermediate-state shake-
up interactions, which we show to have a substantial
influence on the p (1S) final-state channels. In Sec. III we
present our results for argon. The variationally stable
method we employ gives significantly improved predic-
tions in the vicinity of the lowest-energy intermediate-
state resonances as compared to a previous calculation by
one of us,'? which treated almost all of the electron corre-
lation effects that we treat here. We also compare our
length results with those of other authors.®®° In addi-
tion, we demonstrate the agreement of our length and ve-
locity results and, in particular, show that shake-up in-
teractions within the p(!S) final-state channel are very
important for bringing velocity-form transition matrix
elements into agreement with the corresponding length-
form matrix elements. In Sec. IV we present similarly
our results for F~ and include a comparison with previ-
ous theoretical work.'®!” Once again, we find that
shake-up interactions in the p(!S) channel must be in-
cluded in order to obtain good agreement of length and
velocity results. Our total cross-section results are shown
to agree with a recent absolute experimental measure-
ment.?” In Sec. V we discuss our conclusions on our use
of variationally stable methods to calculate multiphoton
transition amplitudes with inclusion of electron correla-
tion effects. A preliminary report of the present results
has been given elsewhere.>

II. VARIATIONALLY STABLE CALCULATION
OF TWO-PHOTON TRANSITION AMPLITUDES

For the many-electron systems we are interested in
here, i.e., Ar and F~, the calculation of two-photon tran-
sition amplitudes with the inclusion of electron correla-
tion effects is complicated by the necessary summations
over one or more infinite sets of intermediate states. Our
general procedure is to enumerate the correlation effects
we wish to include, then evaluate the angular factors ex-
actly for the corresponding transition amplitudes (i.e.,
taking full account of the Pauli principle), and, finally,
calculate the remaining radial amplitudes using variation-
ally stable methods. In what follows. we enumerate the
correlation effects we include in our calculations. We
then illustrate the variationally stable procedures em-
ployed for several of the most important transition ampli-
tudes.

A. Enumeration of electron correlation effects

For a two-photon ionization (detachment) process be-
tween an initial atomic (ionic) state |i ) and a final state
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(fl, the transition amplitude is

D———0>

(2)
T"*f:<f E+wo—H

i> . )
Here H is the exact atomic (ionic) Hamiltonian, E; is the
energy of the initial state, o is the photon frequency, and
D is the electric dipole operator, which in length form is

N
D=¢,3r,, 2)
i=1

where €, is the photon polarization unit vector and r; is
the coordinate vector of the ith atomic (ionic) electron.
[It may be verified easily that the electric dipole operator
in velocity form gives a result for the two-photon transi-
tion amplitude in Eq. (1) equal to that obtained by mak-
ing the substitution r;— —ip; /@ in Eq. (2), where p; is
the momentum operator for the ith electron and where
is the photon frequency.>¢]

In Eq. (1), of course,  f| and |i ) are the exact final and
initial states. A lowest-order approximation to the tran-
sition amplitude is obtained by employing the appropri-
ate Hartree-Fock (HF) approximations for the initial and
final states as well as for the Hamiltonian, i.e.,

D—g————D

T (HF)E<
4 fHF EiHF+a)—‘HHF

iHF> G

In our calculations for two-photon single ionization of
the outer subshell of a rare-gas atom (or, equivalently, for
two-photon detachment of a negative ion with a rare-gas
electronic configuration), the appropriate HF representa-
tion for the initial and final states is straightforward:

ligg ) =|np®'S)) , @)

|fup) =Inp’el('L)) . (5)

In Eq. (4), the one-electron orbitals are the solutions of
the usual HF equations for the atomic or ionic ground
state.’” In Eq. (5), the core orbitals are chosen as those of
the initial state (i.e., we employ the frozen-core approxi-
mation). The radial wave function for the continuum
electron, designated in Eq. (5) by €, is obtained as the
solution of the appropriate LS-dependent HF poten-
tial.*”3 Use of the HF Green’s function operator in Eq.
(3) allows one either to carry out the summation over in-
termediate states explicitly or to evaluate it employing
implicit summation techniques.?®?

Higher-order corrections to the lowest-order transition
amplitude in Eq. (3) take account of electron correlation
effects. Within the HF basis, these effects may occur in
the initial, intermediate, or final states. To first order in
the perturbation operator,

1
IRL
i>j

there are thus three types of higher-order corrections to
the transition operator, viz.,
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Ti(ilf(V)E (fHF D—F : HF L 4 iHF>
(E,- +w—HHF) (E, —HHF)
+<f D L ! D\i >
HE (EiHF+w—HHF) (E,HF’l"CO—HHF) HF
(El-HF+CL)_HHF) (E, +C0_'HHF)

To first order in ¥, then, the exact two-photon transition
amplitude in Eq. (1) may be approximated by the sum of
Egs. (3) and (7),

T3, ~ T2 (HF)+ T2 (V) . (8)

Because of the way the HF potential is defined,*”*® in-

trachannel matrix elements of V between singly excited
states (i.e., matrix elements between singly excited states
differing only in the energy of the excited electron) are
zero. However, interchannel matrix elements of V be-
tween singly excited states (i.e., matrix elements between
singly excited states differing not only in the energy of the
excited electron but also in other quantum numbers) are
generally nonzero. Furthermore, the two dipole opera-
tors D and the Coulomb operator,

1

rij

>
L]
i>j

also lead to intermediate states in the amplitudes in Eq.

[

(7) which have two or more excited electrons. Matrix ele-
ments of V between such states, or between such a doubly
excited state and the ground state, are also generally
nonzero.

In order to include such doubly excited intermediate
states when calculating the amplitudes in Eq. (7),
straightforward application of the variationally stable
procedures of Gao and Starace®* requires, in general,
finite basis expansions in two of the electron radial coor-
dinates. We have not employed such general double ex-
pansions in this paper. Rather we have taken a more ad
hoc approach, judiciously choosing appropriate expan-
sions for each of the amplitudes we have calculated, as
described below.

The specific processes we have included in our calcula-
tions are listed schematically in Table I. This schemati-
zation is compact since distinctions regarding direct and
exchange interactions as well as specific angular momen-
tum coupling schemes are implicit. The table is ordered
as follows: the lowest-order processes shown are those
which contribute to the HF amplitude in Eq. (3); the pro-

TABLE I. Schematic listing of the transition amplitudes included in the present calculations for the
two-photon ionization process, Ar 3p%('S)+2y —Ar* 3p3(2P)el ('L), and the two-photon detachment

process, F~ 2p%'S)+2y —F 2p°(*P)el ('L).

Process

Schematic description®

(1) Lowest-order processes

(2) Intermediate-state
interchannel interactions

(3) Ground-state correlations

(4) Intermediate-state
shake-up interactions

(5) Intermediate-state
electron scattering
interactions

(6) Final-state electron
scattering interactions

(a) p6;p56|11 —7—>p561
(b) s?p¢ —L»sp%l —7—>p561

p6

Psflll Pslez Psfl

14
(a) p6 —V—>P4E|ll,€212 —-7—>p56111 J—»psfl
v
®) p* ——pleiliesh —— pielerl; L p%l
Y
(c) pS ——pele|l, —— p*ele,l, —y->p56‘1

¥
pS ——piel, ——plelel, —y>psel

Y 4 Y
pé ——pel, ——pele,l, — > plel

1
(a) P6 ;pielll L’1"451116212 ‘—"Psel

| 4
(b) p°® ;psezlz —L»p‘elllezlz —p’el

*The symbols ¥ and V indicate that the transitions indicated are induced, respectively, by the electric
dipole operator and the perturbation operator, V=73, ; r;; ' — Vyg, where 3, ; r;; ' is the Coulomb in-
teraction operator and Vyg is the appropriate Hartree-Fock nonlocal potential.
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cesses of first order in V are distinguished by whether
they involve ground-state, intermediate-state, or final-
state correlation effects, as in the ordering of terms for
the amplitudes in Eq. (7). In the subsections which fol-
low, we illustrate our ad hoc variational procedures for a
few of the key processes listed in Table I which contrib-
ute to the two-photon transition amplitudes. We note
that the description of correlation effects to first order in
V in Eq. (7) has been made for simplicity. As described
below, we have in actuality treated many effects to higher
order. Specifically, intermediate-state interchannel in-
teractions are treated to infinite order, and certain dipole
amplitudes have been replaced by effective dipole ampli-
tudes.

B. Lowest-order and intermediate-state interchannel effects

It is convenient to treat processes (1a) and (2) in Table I
simultaneously as well as to infinite order in ¥ by defining
a projection PHP of the exact Hamiltonian H onto the
space of all states having a single electron excited from
the outer p® subshell, where P is a projection operator
defined by

P=3 [de|np’el'('P))(np5el'('P)| . 9)

T
Here the states all have 'P symmetry, as is appropriate
for electric dipole excitations from a 'S initial state. Thus

the exact two-photon transition amplitude in Eq. (1) may
be approximated by

T{2) ;(processes (1a)+(2))
=(fur|DP(EF*+0—PHP) " 'PD|iys) , (10)

J
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where the HF initial and final states are defined in Eqgs.
(4) and (5). In obtaining Eq. (10), we have ignored all ma-
trix elements belonging to PHQ or QHP, where Q =1—P.
We evaluate Eq. (10) using variationally stable tech-
niques.’>** Thus we write

T{2) ;(processes (1a)+(2))
= (fur|DIA;) + (A |Dliyg)
—(A(EFF+0—PHP)|A;) , (11)

where the states (A;| and |A;) are defined formally
by

|A;)=P(EFF+0w—PHP)"'PD|iyy) , (12)
i i HF

(Af|={fyp|DP(EFff+0—PHP)"'P . (13)

Because of the projection operator P, we may write A;
and A, explicitly in terms of the unknown one-electron
orbitals MZ and k{l , as follows:

A= Inp*ri (P) (14)
1

2

(Afl=3 (np°M (P . (15)
1

1

For electric dipole processes of course, I, and [/, are re-
stricted to the values O and 2, which we indicate by the
subscripts s and d below. Substituting Egs. (14) and (15)
into Eq. (11) and carrying out all angular integrations
gives

T2 s(processes (1a)+(2))=azb,[{el|r|Ay) +(Aflrinp )1 +a.b [(ellrlAl) +{Allrlnp)]

—(ag(MLa A |

Vs

In Eq. (16), a4(l,L), a,(l,L), b;, and b, are angular fac-
tors for the electric dipole transitions from the initial
state to the intermediate state (b; and b,) and from the
intermediate state to the final state (a; and a,) and are
given in the Appendix; h,lP is the LS-dependent one-
electron radial HF Hamiltonian®"3® for LS =!P; €l and
np denote the one-electron HF radial wave functions for
the active electron in the initial and final states; €, is the
HF energy for the initial one-electron orbital np; and v
and v, are the one-electron off-diagonal interchannel in-
teraction operators, which are also given in the Appen-
dix. In obtaining Eq. (16) we have used the fact that

PHP =PHyP +PVP , 17

as well as the fact that PHypP has only diagonal matrix
elements and PVP has only off-diagonal matrix elements.

1
€, +a)——th

byIAL)
by ALY

~Ugs

(16)
€,p to—h,F

Equation (16) is solved by expanding each A; in a Slater
orbital basis,

M= a,f, (LB, (18)
where
fullLB;r)=N,r'tre=Fr (19)

and where a, are the expansion coefficients, N, is a nor-
malization factor, and 8 may be real or complex and is
chosen intuitively for each specific calculation. The
coefficients a, are obtained by enforcing the variational
stability condition for the amplitude in Eq. (16).3%3°

It is straightforward to generalize the procedure de-
scribed in this section to treat also interchannel interac-
tions among states having single electrons excited out of
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inner subshells. Near the single-photon ionization
threshold and above, these interactions may produce ad-
ditional resonances. In this work, however, we have only
included the contributions of excitations from the ns?
inner shells to the two-photon transition amplitude in
lowest-order (HF) approximation, corresponding to pro-
cess (1b) in Table I. Besides interchannel interactions,
there are other important intermediate-state electron
correlations. Since these involve doubly excited inter-
mediate states, we have treated them perturbatively. We
describe our treatment of some of these interactions later.

J

T(process (3a))=fd61fd62 3 3 3 (np’el('L)|DInp’¢,l,('P))
I, L,SL,S

1272 &
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C. Ground-state correlations

Processes (3a) and (3b) in Table I both involve a double
excitation out of the np® ground-state configuration fol-
lowed by two successive photon absorption processes, one
of which further excites one of the doubly excited elec-
trons and one of which deexcites the other electron back
to the final core configuration, nps. Processes (3a) and
(3b) differ only in the time ordering of the photon absorp-
tion processes. Specifically, process (3a) represents the
third-order amplitude

1
€ TO—E€

X (np3e,l,('P)|D|np* (L8 )e,l,(LS e 1,('S))

1
X
2e

np_

and process (3b) represents the third-order amplitude,

€176

(np™(L8)e,l,(LS )e,l,(1S)|VInps(lS)) , (20)

T(process (3b))= [de, [de, 3 3 3 (np°el ('L)|DInp*(LS)e,l,(LS)el ('P))

1., L,5L,5
1

26, to—€,—€

X {np* (LS )eyl,(LS)el ('\P)|D|np*(LS )e,l,(LS e, 1,('S))

% 1

2e,, —

The two amplitudes in Egs. (20) and (21) have the same
angular and radial factors; they differ only in the energy
denominators. Using the fact that the photoelectron en-
ergy in the final state € is equal to 2o +¢,,, the two am-
plitudes may be combined to obtain
T(process (3a))+ T(process (3b))

=3 3 A(k1l,l,,LLLpkK1,L), (2
k 1,1,

where A is the angular factor, given in the Appendix, and
where the radial factor p is defined by

1
oML, 1L)= fdelf d62(€l|r|elll)m
1
><(np|r]6212)enp_w_e2
X R (€,l,,€,1,;np,np) . (23)

In Eq. (23), the Slater integral R * is defined by
RXeyl,, €l ;np,np) = fowdr uelll(r)u,,p(r)yk(ezlz,np;r) ,
(24)

where the u,,(r) are the one-electron radial wave func-
tions, and where the function y, is defined by

€176

(np*(LS)e,l,(LS)e,l,('S)|VInps('S)) . 21

bir)= —(k+1) [Tk
yela,bsr=r Jtruaouy(nde
+rk [ TRty (tu, (ndt (25)

Also, the length form electric dipole radial integrals are
defined by

(alrlb)= fo“’dr u, (rrug(r) . (26)

It is the radial function p*(/,,l,) which we wish to
evaluate by variationally stable, implicit summation tech-
niques. Using the HF 'P one-electron radial Hamiltonian
for each of the two intermediate-state excited electrons,
we may write p¥(/,,1,) as follows:

P11, 1) =RM AP, A np,mp) 27
where

(APl =(nplrle,, —o—hP(r] ™! (28)
and where

(A= (ellrle,, +o—hP(nN] 7" . (29)

The use of the HF 'P radial Hamiltonian for each of the
excited electrons is a common approximation, which is
employed, e.g., in random-phase approximation (RPA)
calculations. We evaluate Eq. (27) in two steps, each of
which we describe now in turn.
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1. Evaluation of M’;(r)

Note that M’zp(r), defined in Eq. (28), satisfies an inho-

mogeneous equation for which the “energy” is €,, —w,
which is more negative than the np ground-state orbital
energy. Since such a function should be very well local-
ized, we have represented A.}'Zp(r) as an explicit expansion

in N Slater orbitals, as in Eq. (18), where the coefficients
a, of the expansion may be obtained as the solutions of
the following set of linear, inhomogeneous equations:*°

N
S o, fule—0—hP(f) =(nplrlf,) . (30)

n=1

where 1 <m < N.

2. Evaluation of p*(1,,1,)

With M‘;’ known, there is only a single summation re-

quired to evaluate p*(/,,l,) in Eq. (27), namely, that
defined implicitly by the function Aff [cf. Eq. (29)]. Rath-

er than calculate kff explicitly for substitution in Eq. (27),

we use instead variationally stable techniques to evaluate
pX(1,1,) directly. Thus we write the amplitude p*(I,,,)
in Eq. (27) in the following form, using Eqgs. (24) and (29):

pHL 1) = ellr[€,, +o—h P(N] ™y (AP np;r)inp ) .
31)

Defining the implicit function,

AP ) =l To—hy (N7 'y (AfP,np;r)lnp) . (32)

Eq. (31) may be written in a variationally stable form>* as
J

CHENG PAN, BO GAO, AND ANTHONY F. STARACE 41

P 1) = CAf!y (AP, np;r)lnp ) +ellrlRP?) )
1 -
—(Aflllento—hm P(MIRP, ), (33)

where Aff has been defined in Eq. (29). Equation (33) is
evaluated numerically by representing kff and X;’l”, 1, as ex-

pansions in Slater orbitals and evaluating the coefficients
by enforcing the variational stability condition**3° on Eq.
(33).

3. Process (3c)

The ground-state correlation process (3c) in Table I in-
volves an initial double excitation followed by deexcita-
tion of one of the excited electrons by the two absorbed
photons back to the initial state. For this deexcitation
part of the process the other excited electron is a specta-
tor. Since one of the excited electrons starts and ends in
the bound np orbital, this process is easily treated by vari-
ationally stable procedures similar to those described al-
ready.

D. Other intermediate-state interactions

When the first photon absorption produces a singly ex-
cited intermediate state, it is possible for either the core
or the excited electron to excite another electron out of
the core by means of the perturbation V. These two pro-
cesses are described schematically by (4) and (5) in Table
I. We discuss each in turn.

1. Intermediate-state shake-up interactions

Process (4) in Table I has the following transition am-
plitude:

T{2) (process (4))=3 3 3 [ de,(np’el('L)|DInp*(LS)el (LS)e,1,('P)) L
propiieg 4N €, —W—E
L,SL,§1, np 1
4rg T<Q 1 5 1 1
X {np*(LS)el(LS)e,l,('P)|VInp¢,l,('P)) p—,
X {np3e,1,('P)|D|np®'S)) . (34)

Carrying out the angular integrations, one obtains
T{?) ;(process (4))

= B(k,l,,l,L)R np,el,np,np)r(1,), (35)
k1,

where B (k,l,,l,L) is the angular factor, given in the Ap-
pendix, and 7(/,) is defined by

)= [ de(nplrie,d,) (e 1

—0—€)€,, To—¢€)

np

X e llrlnp) . (36)

Equation (36) is troublesome in its current form because
the two energy denominators depend on the same vari-

f

able €,. They may be uncoupled, however, using ortho-
normality of the continuum orbitals,

<6111|€211>=8(61_62) . (37)
Representing, then, the corresponding two Green’s func-
tions in operator form, i.e.,

let, ) Cely| 1

[de = = (38)
enpiw_6 an:tw—h,lp

we may write 7(/,) as
7(11)E(nplr(e,,p—w~h;lp)_1(e,,p+w—h11lp)—’r|np) )

(39)
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Finally, introducing (A[?|, which is defined in Eq. (28)
and calculated as in Sec. II C 1 above, we get

(1) =(AP|(e,, +o—h, ") rinp) . (40)

Equation (40) is then evaluated using variationally stable
procedures similar to those already described.

2. Intermediate-state electron scattering interactions

These are described schematically by process (5) in
Table I. Unlike the shake-up process described above,
the two energy denominators are uncoupled in the sense
that they contain kinetic energies of two different excited
electrons. Use once again of A?, defined in Eq. (28) and

J
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calculated as in Sec. II C 1 above, reduces the radial am-
plitude to a form which is easily evaluated by variational-
ly stable procedures already described.

E. Final-state electron scattering interactions

This interaction, described schematically by process (6)
in Table I, has a very important effect on the two-photon
transition amplitudes, as has been described elsewhere
(Refs. 10, 12, 13, 20, and 21). In all of these previous
works, however, this interaction is calculated in the
RPA. Instead, we evaluate the angular factor for this in-
teraction exactly, taking full account of the Pauli ex-
clusion principle; the radial integrals are then evaluated
by the method described below.

The transition amplitude for process (6a) is

T{?) ;(process (62))=3 3 3 fdﬂf de,(np’el ('L)|VInp*(LS)e,l,(LS)e,l,('L))
LS

W

L
1

(np*(LS)e,l (LS )e,l,('L)|DInp3el,('P))

26, t20—€,— €

X

A similar expression applies for process (6b), in which the
time ordering of the two electric dipole excitations is re-
versed. Combining the amplitudes for processes (6a) and
(6b) and evaluating all angular factors exactly gives the
following result:

T2 -(processes (6a)+(6b))

=3 C(kl,l,LLL)xk1,1,), (42)
ki,
where the angular factor C(k,l,/,,],L) is given in the
Appendix and where

xtk,1y,1)= [de, [ de;R np,el;e )l €l,)

1
X——_.
P {&l,|rinp)
1
X— .
€"p+w—61 (Glll)rlnp> (43)

Define now the following implicit functions:
(Ay(np,el 1,1,
= [de,R¥np,el;AP,€)1, )€, +o—€) ey,
(44)
(My(np,el,l,1,)]
zfdezRk(np,el;ezlz,kff’)(enp+w—62)_1<6212! ,
(45)

where M’f’ and M’f are defined as in Eq. (29). We may
then write X in the following variationally stable form:

————(np’,1,('P)|D|np®('S)) . @1
6"p+w_€l<np €,l,('P)|D|np®('S))

[
x(k,1,,1,)= Rk(np,el;}\;‘:’,kf'f’)+(kllrlnp)

—(Miley, +w—h,"Pl)»;‘l")+(7\2|r|np)

~(hlen, +o—hPIAgP) . 46)

The implicit functions A, A,, M’f’, and M’f in Eq. (46) are

each expanded in a Slater orbital basis and the
coefficients of these expansions are obtained, as usual, by
requiring Eq. (46) to be variationally stable.*°

F. Higher-order interactions

It is convenient to include effects of ground-state corre-
lations and interchannel interactions in evaluating the
third-order amplitudes for processes (4)-(6). Each of
these processes starts as an electric dipole excitation to a
singly excited intermediate state. Effects of ground-state
and interchannel interactions may be included by replac-
ing the initial electric dipole radial operator by an
effective electric dipole radial operator. Such procedures
are common in many-body theory, and have been em-
ployed previously for two-photon processes.'3

Specifically, to include ground-state correlation effects
to first order in each of these processes we may simply
make the following replacement:

(ely|rlnp ) — (el |rlnp)

+ 3 d(k,1,I,)R k(k}’f,ell;np,np) , @7
ki,
where R is defined by Eq. (24), k;’; is defined by Eq. (28),

and d(k,l,,l,) is an angular factor given in the Appen-
dix. In a similar way, interchannel interactions can be
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taken into account to infinite order by making the re-
placement

(€ Fo—hP) Hnp ) 1)), 48)

where the implicit function |A}) is obtained from solving
Eq. (16).

III. TWO-PHOTON IONIZATION
CROSS SECTIONS FOR Ar

We are concerned with the calculation of the cross sec-
tions for each of the following transitions:

Ar 3p8(1S)+2y —>Ar*3p3(2P)ep ('S) (49a)
—Art3p3(*P)ep (D) (49b)
—Art3p3(?P)ef (D) . (49¢)

We discuss first some numerical details of our calcula-
tions and then present our cross-section results for each
of these three channels as well as for the total cross sec-
tions.

A. Numerical details

We have used the Roothaan-HF wave functions tabu-
lated by Clementi and Roetti*’ to describe the Ar 3p%('S)
single-configuration ground state. These were then used
as our frozen-core orbitals in intermediate and final
states. The final-state wave function for the photoelec-
tron in each of the configurations on the right in Eq. (49)
was calculated in the appropriate LS-dependent HF po-
tential.’”*® Orthogonality of the continuum p-electron
wave functions to the bound 2p and 3p wave functions
was assured by calculating both the bound and continu-
um orbitals in the same Hermitian potential, as described
in Refs. 41-45. Each of our continuum wave functions
was energy normalized at large radial distances:

172
Y, (k,r)= m sin[O(],k,r)+8] , (50a)
where
o(Lk,r) ~ kr—%1rl+k‘11n(2kr)
+argl’'(l +1—i/k), (50b)
ELk,r) ~ k. (50c)

In Eq. (50), k%/2 is the kinetic energy of the photoelec-
tron and 8 is the phase shift with respect to a Coulomb
wave. The phase function 6(l,k,r) and the amplitude
function £(1,k,r) are calculated at large but finite r using
the procedure of Burgess.* In our calculations we have

ignored the final-state interchannel coupling between the
J
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£ (D) and p (1D) channels.

In calculating the various contributions to the total
two-photon transition amplitude, we have employed
Slater orbital expansions of the type shown in Eq. (18), as
discussed in Sec. II. Typically we employed 40-50 Slater
orbitals for each such expansion. For low-n values [cf.
Eq. (18)] several different exponents S [cf. Eq. (19)] were
used, while for higher-n values only a single 8 value was
used. Our calculations were carried out using double pre-
cision arithmetic (120 bit) on a CDC 835 computer. Gen-
erally we were able to obtain convergence of our ampli-
tudes to better than 1 part in 10°.

Accurate depiction of the prominent resonance struc-
ture in the two-photon ionization cross section of argon
requires detailed consideration of the binding energies
employed. For all processes described in Sec. II in which
the intermediate state is singly excited and characterized
by a one-electron Green’s function of the form
(€3p+a)—hf‘s)_l, we have replaced the HF 3p orbital
binding energy of 16.08 eV by the experimental*’ 3p sub-
shell binding energy of 15.76 eV. Furthermore, in calcu-
lating our final-state wave functions, the kinetic energy of
the photoelectron is related to the photon energy by
k?/2=2w—15.76 eV. Because of our implicit summa-
tion over intermediate states, it is not possible to shift the
positions of intermediate-state resonances into exact
agreement with experiment, as would be possible using an
explicit summation over intermediate states. Neverthe-
less, our use of the experimental single ionization binding
energy wherever feasible improves our predicted reso-
nance positions significantly.

The binding energies employed in evaluating the tran-
sition amplitude for process (6) in Table I require special
consideration, as has been noted in similar calculations
for xenon.*® This process has been discussed in detail in
Sec. ITE above in the approximation that the perturba-
tion operator V is included only to first order. This ap-
proximation results in Eq. (43) for the radial part of the
transition amplitude, which contains two single-particle
Green’s functions, (€3, +o—h;)”". Because of this,
double excitation resonances as well as the double ioniza-
tion threshold occur much lower in energy than is ob-
served experimentally. Hence their effect on the predic-
tions for the two-photon, single ionization cross section
and, in particular, on the widths of the single excitation
resonances, is exaggerated. We have corrected this
difficulty in the following approximate, ad hoc way.
Rather than replace both of the HF e, energies in Eq.
(43) by the negative of the experimental single ionization
binding energy, €5;*, we have replaced one of them by
the negative of one-half the experimental*® double ioniza-
tion binding energy, e§;%‘, which equals 43.4 eV. Thus, in

Eq. (43) we make the replacement

(€3, Tw—€) (€3, +w—e€) '=0.5[ (0. 5e§;g‘+m—e2)~‘<e§;P‘+a>—el)“

+(e§;,Pt+w—ez)*‘(o.5e§;g‘+w—el)"]

= (eggg*+2w~2e2)"(e§;Pt+w—e1)“ e to—e) (i +20—2¢) 7" .

(5D
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In this way, the correct single and double ionization
threshold binding energies are approximately included in
our calculations, thereby reducing somewhat the effect of
final-state electron scattering interactions on the two-
photon cross section and giving a much more reliable
description of the lowest intermediate state, single-
excitation resonances.

B. Results for the two-photon ionization cross sections

In lowest-order perturbation theory the N-photon ion-
ization rate W is given by*

W=ayI". (52)

Here oy is a generalized N-photon cross section depen-
dent only on properties of the atomic or ionic target and
on the polarization of the incident light and I is the inten-
sity of the laser field. W is usually measured in units of
ions/sec, oy in units of cm?Vsec’ 7!, and I in units of
photons/(cm?sec). For two-photon ionization, the gen-
eralized cross section in atomic units (i.e., e =#i=m =1)
is

81ra)

o§= |T12f (a.u.) . (53)
Here w is the photon energy, c is the speed of light, T is
the reduced transition amplitude discussed in Sec. II, and
f4 is a geometrical factor dependent on the polarization g
of the photons and on the final-state term level. Table II
gives the values of f, for the cases of interest in this pa-
per. Conversion of Eq. (53) to the usual units cm*sec re-
quires the conversion of the dimension L*T from a.u. to
cgs units,

L*T (a.u.)=1.8967X107°° cm*sec . (54)

We present our results for the generalized two-photon
cross section for each of the three transitions in Eq. (49)
in the case of linearly polarized photons in Figs. 1-3. In
Fig. 1(a) we see that in lowest order, i.e., HF approxima-
tion, the dipole length and velocity results for the p(1S)
final-state channel differ by more than a factor of 3.
Furthermore, the width of the Ar 3p%s('P)
intermediate-state resonance in the length results is more
than an order of magnitude larger than in the velocity re-
sults. Inclusion of ground-state correlations and
intermediate-state interchannel interactions [cf. processes
(2) and (3) in Table I] hardly diminishes the discrepancies
between the length and velocity results. In Fig. 1(b) we

TABLE II. Values for f, [cf. Eq. (53)] for linearly polarized
(g =0) and circularly polarized (¢ = *1) photons.

Final-state

q term level Sq
: > :
0 D =

+1 'S 0
+1 'D L

oy
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see that inclusion of intermediate-state and final-state
electron scattering interactions [cf. processes (5) and (6)
in Table I] causes a dramatic lowering of the velocity re-
sults but only a modest lowering of the length results in
the region below the 4s resonance. Inclusion of
intermediate-state shake-up interactions [cf. process (4) in
Table I), however, lowers further the length results and
raises the velocity results into near agreement with the
length results. Furthermore, it reduces the width of the
length results for the 4s resonances dramatically, bringing
them into reasonable agreement with the velocity results.
For clarity, we have not presented all curves in the region
above 14 eV, where near 14 eV there are the Ar
3p°3d('P) and Ar 3p°5s('P) intermediate-state reso-
nances (unresolved in Fig. 1) and near 15 eV there are the
Ar 3p°4d ('P) and Ar 3p°6s('P) intermediate-state reso-
nances (also unresolved in Fig. 1). We see, however, that
for these higher-energy resonances also electron correla-
tions have narrowed the initial HF length results consid-
erably.
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FIG. 1. Generalized two-photon cross section for the transi-
tion Ar 3p%('S)+2y —Ar*3p°ep('S) for photon energies below
the single ionization threshold for the case of linearly polarized
light. L and V indicate electric dipole length and velocity re-
sults, respectively. (a) Solid and dashed curves, HF results.
Dash-dotted and dash-double-dotted curves, results including
processes (1)—(3) in Table I. (b) Dash-dotted and dash-double-
dotted curves, results including processes (1)—(3), (5), and (6) in
Table I. Solid and dashed curves, results including all processes
listed in Table 1.
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FIG. 2. Generalized two-photon cross section for the transi-
tion Ar 3p®+2y — Ar*3p’ep (' D) for photon energies below the
single ionization threshold for the case of linearly polarized
light. Dashed curve, HF length results. Solid curve, length re-
sults including all processes listed in Table I.

In Fig. 2, we see that our lowest-order, i.e., HF approx-
imation, dipole length results for the p('D) final-state
channel are quite close to our “fully correlated” dipole
length results, which include all processes listed in Table
1. Such is not the case for the f( 1D) channel, as shown in
Fig. 3. Here the HF dipole length results (dash-dot
curve) are the largest (on average) and do not indicate
any of the Ar 3p°ns('P) intermediate-state resonances,
which only appear when interchannel interactions are in-
troduced. This is seen in the dashed curve, which in-
cludes both ground-state and intermediate-state inter-
channel interactions. Inclusion of the remaining interac-
tions in Table I, in particular, the final-state electron
scattering interactions, results in a change in the sign of
the resonance profile parameter,*® as shown by a compar-
ison of the solid and dashed curves.

Figures 4 and 5 show our results for the total two-
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FIG. 3. Generalized two-photon cross section for the transi-
tion Ar 3pS%S)+2y —Ar*3p’ef('D) for photon energies
below the single ionization threshold for the case of linearly po-
larized light. Dash-dotted curve, HF length results. Dashed
curve, length results including processes (1)-(3) in Table I.
Solid curve, length results including all processes listed in Table
I
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photon ionization cross sections in the cases of linearly
and circularly polarized light, respectively. As was the
case for the p (1S) channel results shown in Fig. 1, the di-
pole length total cross-section results for linear polariza-
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FIG. 4. Generalized two-photon total cross sections for the
process Ar 3p%'S)+2y—Ar*3p3(*P)+e~ for the case of
linearly polarized light. (a) Solid and dashed curves, dipole
length and velocity results in HF approximation [cf. process (1)
in Table I]. Dash-dotted and dash-double-dotted curves, dipole
length and velocity results including ground-state and
intermediate-state interchannel interactions [cf. processes (2)
and (3)in Table I]. (b) Solid and dashed curves, dipole length
and velocity results including, in addition, electron scattering
interactfons [cf. processes (5) and (6) in Table I]. (c) Solid and
dashed curves, dipole length and velocity results including all
processes listed in Table I.
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FIG. 5. Generalized two-photon total cross sections for the
process Ar 3pS%('S)+2y —Ar*3p>(?P)+e~ for the case of cir-
cularly polarized light. Dash-dotted and dash-double-dotted
curves, lowest-order (HF) dipole length and velocity results.
Solid and dashed curves, dipole length and velocity results in-
cluding all processes listed in Table I.

tion, shown in Fig. 4, decrease steadily as the various
electron correlation processes listed in Table I are includ-
ed in the calculation. The dipole velocity results change
less predictably. As shown in Fig. 4(c), our results in-
cluding all of the electron correlations listed in Table I
give good agreement of the dipole length and velocity re-
sults.

The results for the circular polarization cross sections,
shown in Fig. 5, indicate a less dramatic change between
the lowest-order HF level results and the results includ-
ing all correlations listed in Table I. This is due primarily
to the absence of any contribution of the p('S) partial
cross section to the total cross section for circularly po-
larized light. It is the p ('S) partial cross section in the
case of linearly polarized light which exhibits the most
dramatic influence of intermediate-state shake-up interac-
tions, as discussed above.

C. Comparisons with other calculations

There have been three prior treatments of electron
correlation effects on the two-photon ionization cross sec-
tion of argon. Pindzola and Kelly,® in their many-body
perturbation-theory (MBPT) calculation, treated the
effects indicated by processes (1)—(3) in Table I for the
f (D) final-state channel; the p ('S) and p (D) final-state
channels were treated only in lowest order. Moccia, Rah-
man, and Rizzo’ have calculated approximate random-
phase approximation results, which employ relaxed core
wave functions in the final state (as compared with our
frozen-core wave functions) and which use continuum
final-state wave functions calculated in a static exchange
potential (as compared to our use of continuum HF wave
functions calculated in the appropriate LS-dependent
nonlocal potential’’*®). An exact RPA calculation
should in principle treat all processes listed in Table I ex-
cept for the shake-up interactions [process (4)]. However,
we emphasize hat the RPA angular factors for the
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scattering processes (5) and (6) in Table I ignore the Pauli
principle; we have used instead the exact angular factors.
Similarly, the transition matrix results of Starace and
Jiang'? also treat all processes listed in Table I except for
the shake-up interactions [process (4)]. Another
significant difference with our results is that they also
used the RPA angular factors for the electron scattering
interactions. Finally, we compare our results also with
the central potential model results of McGuire,® which
may be considered as an approximation to our lowest-
order HF results.

In summary, then, in our calculation for two-photon
ionization of argon we have included the influence of
shake-up interactions, which we have found to be essen-
tial to bring into agreement length and velocity results
for the p (1S) partial cross section, and hence also for the
total cross section for linearly polarized light. It is in-
teresting to note that Starace and Jiang!? adduced in-
direct evidence that all three of the results in Refs. 6, 9,
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FIG. 6. Generalized two-photon total cross sections (dipole
length) for the process Ar 3p%('S)+2y —Ar*3p3(2P)+e ™. (a)
Results for linearly polarized light. Solid curve, present results
including all correlation processes listed in Table I. Dashed
curve, Starace and Jiang (Ref. 12). Dash-dotted curve, Moccia,
Rahman, and Rizzo (Ref. 9). Dash-double-dotted curve, Pind-
zola and Kelly (Ref. 6). (b) Results for circularly polarized
light. Dotted curve, McGuire (Ref. 8). All other curves are as
identified in (a).
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and 12 differed significantly for the p ('S) partial cross
section. We also have taken proper account of the Pauli
principle in calculating the effect of electron scattering
interactions [processes (5) and (6) in Table I].

We emphasize, however, that the near threshold two-
photon ionization cross sections for argon are character-
ized by significant resonance structures. Differences in
treating these resonances, therefore, also lead to
significant differences in the predicted cross sections.
Pindzola and Kelly® used experimental resonance ener-
gies; Moccia, Rahman, and Rizzo® used RPA resonance
energies; Starace and Jiang'? as well as this paper use HF
level energies but experimental binding energies. Furth-
ermore, in contrast to Starace and Jiang’s'? treatment of
the final-state electron scattering interaction [process (6)
in Table I}, we have made an ad hoc attempt to introduce
the experimental double ionization binding energy into
our calculation, as discussed in Sec. IIT A above.

With these differences between the present and prior
calculations in mind, we compare the results in Fig. 6.
We make all comparisons for the dipole length results
only, as we have demonstrated the greater reliability of
these over the dipole velocity results. Figure 6(a) shows
the total two-photon cross section for linearly polarized
light and Fig. 6(b) shows the total two-photon cross sec-
tion for circularly polarized light. As shown in Fig. 6(a),
ours is the lowest result in the case of linearly polarized
light, due almost entirely to our inclusion of the shake-up
interactions [process (4) in Table I], which reduce the
p(1S) partial cross section, and hence the total cross sec-
tion, by =~0.1X107°° cm®*sec [cf. Fig. 1(b)]. Without
this interaction, we would essentially agree with the re-
sults of Starace and Jiang'? near threshold. In contrast,
as shown in Fig. 6(b), for circularly polarized light we
essentially agree with the results of Starace and Jiang!?
near threshold. In both cases of incident light polariza-
tion, we have not attempted to make detailed compar-
isons of the various predictions for the intermediate-state
resonance profiles. It is clear, however, that there are
major differences both within the first resonance and be-
tween the first two resonances.

IV. TWO-PHOTON DETACHMENT
CROSS SECTIONS FOR F~

We are concerned with the calculation of the cross sec-
tions for each of the following transitions:

F~ 2p%('S)+2y —F 2p°(*P)ep ('S) (55a)
—F 2p3(*P)ep ('D) (55b)
—F 2p°C*P)ef('D) . (55¢c)

The numerical details of our calculations are essentially
the same as for argon, as discussed in Sec. III A above.
We thus note here only the differences from our calcula-
tions for argon.

One difference is that the phase function governing the
asymptotic behavior of our final-state wave functions has
the asymptotic behavior

oL k,r) ~ kr—1ml (56)

r— o
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instead of that given in Eq. (50b). Both 6(/,k,r) and the
amplitude {(/,k,r) [cf. Eq. (50)] have been calculated for
our F~ wave functions using the procedure of Burgess.*
The experimental®! detachment energy for F~ is 3.399 eV
as compared with the HF 2p orbital binding energy® of
4.921 eV. The experimental ionization energy*’ of F is
17.422 eV, so that the experimental energy to remove two
2p electrons from F~ is 20.821 eV, which is used in our
evaluation of the final-state electron scattering interac-
tions, as described in Sec. III A above. By comparison,
the HF binding energy to remove two 2p electrons is
9.842 eV in the frozen-core approximation.
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FIG. 7. Generalized two-photon total cross sections for the
process F72p%('S)+2y —F 2p*(*P)+e "~ for linearly polarized
incident light. L (V) indicates dipole length (velocity) results.
(a) Solid curve, lowest-order 2p-subshell HF results [process (1a)
in Table I]. Dashed curve, including in addition the lowest-
order 2s-subshell HF results [process (1b) in Table I]. (Note
that the dipole length dashed curve is indistinguishable from the
dipole length solid curve.) Dash-dotted curve, including in ad-
dition intermediate-state interchannel interactions and ground-
state correlations [processes (2) and (3) in Table I]. (b) Dash-
dotted (L) and dash-double-dotted (V) curves, including all pro-
cesses in Table I except for intermediate-state shake-up interac-
tions [process (4) in Table I]. Solid (L) and dashed (V) curves,
including all processes in Table I. (Note: HF binding energies
were used to obtain all results shown.)
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FIG. 8. Comparison of length (L) and velocity (¥) results for
the generalized two-photon detachment total cross section of
F~ for linearly polarized incident light in the following two
cases: (a) Using HF binding energies (solid and dashed curves).
(b) Using experimental binding energies (dash-dotted and dash-
double-dotted curves).

A. Results for the two-photon detachment cross sections

The two-photon detachment cross section for F~
differs from that for Ar in not having any intermediate-
state resonance structure and in having a zero value at
threshold, in accordance with the Wigner threshold
law.>2 We exhibit the role of the different electron corre-
lation effects listed in Table I on the total two-photon de-
tachment cross section for the case of linearly polarized
light in Fig. 7. One sees that the dipole length results de-
crease monotonically as the various electron correlations
listed in Table I are included in calculating the two-
photon transition amplitude. At a photon energy of 4.8
eV the decrease of our curve including all correlation
processes listed in Table I as compared to our HF result
is almost 40%. In contrast, the various dipole velocity
results alternately increase and decrease with the largest

1.5X10°50 T T T T T T T T

—_
T

——

bt
[$))
T

CROSS SECTION (cm# sec)

0 L : . . . A
1.7 19 21 23 25 27 29 31 33
PHOTON ENERGY (eV)

FIG. 9. Partial two-photon detachment cross sections for F~
for linearly polarized incident light [cf. Eq. (55)]. Solid curves,
lowest-order HF results [process (1) in Table I]. Dashed curves,
results including all processes in Table I. All results shown
were obtained using experimental binding energies and employ-
ing the dipole length formula.
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FIG. 10. Comparison of the total two-photon detachment
cross sections for F~ for linearly and for circularly polarized in-
cident light. Dashed curves, lowest-order HF results [process
(1) in Table I]. Solid curves, results including all processes in
Table I. All results shown were obtained using experimental
binding energies and employing the dipole length formula.

correction coming from the intermediate-state shake-up
interactions [cf. process (4) in Table I]. Our final length
and velocity curves are in reasonably good agreement.

The results shown in Fig. 7 were obtained using the
theoretical (HF) binding energies. The discrepancies be-
tween the experimental and theoretical binding energies
are much greater in F~ than in Ar. When we incorpo-
rate the experimental binding energies in our calculation
in the way described in Sec. III A above, the dipole
length cross section increases slightly, but the dipole ve-
locity cross section increases by more than a factor of 3,
as shown in Fig. 8. Such behavior of the velocity gauge
results upon changing the energies used in our formulas
is not entirely unexpected.’> Because of this extreme sen-
sitivity of the dipole velocity results, all further presenta-
tions of our results employ the dipole length formula and
the experimental binding energies.

Our results for the partial two-photon detachment
cross sections are shown in Fig. 9. For these dipole
length results it is clear that electron correlation effects
are negligible for the f(!D) channel, modest for the
p (D) channel, and quite large for the p (S) channel. In
the latter case, the intermediate-state shake-up process
gives most of the total correction to the lowest-order HF
results. These partial cross-section results explain the
difference in the importance of electron correlations for
the total cross sections for linearly and for circularly po-
larized light. As shown in Fig. 10, the effect of electron
correlation is large for linearly polarized incident light
but very modest for circularly polarized incident light. It
should be noted that the p (S) partial cross section does
not contribute to the total cross section in the case of cir-
cularly polarized incident light.

B. Comparisons with other theoretical
and experimental results

There are two other theoretical calculations and one
experimental measurement for the two-photon detach-
ment cross section of F~. Robinson and Geltman!® have
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presented dipole length central potential model results in-
cluding the effect of a long-range polarization potential.
More recently, Crance!® has presented dipole length
independent-electron-model results employing frozen-
core HF wave functions (to describe the initial-state as
well as the bound final-state electron orbitals) and both
free-electron wave functions and HF wave functions to
describe the detached electron. Most recently, Kwon
et al.” have used a Nd:yttrium aluminum garnet (YAG)
laser and an ion trap to obtain the first absolute measure-
ment of the F~ two-photon detachment cross section.
Our results for the total two-photon detachment cross
section for linearly polarized incident light are compared
with these others in Fig. 11. Both our lowest-order HF
results and our results including all correlation effects
listed in Table I are in excellent agreement with the single
experimental data point. Our HF results are roughly
consistent with those of Crance.!” Both the central po-
tential model results'® and the free-electron results,®
however, are nearly a factor of 3 larger than our fully
correlated results. The largest discrepancy is with the re-
sults of the central potential model calculation, which in-
corporates a long-range polarization potential. As noted
in Ref. 21, however, and as discussed in detail else-
where,>* the detached electron may polarize the residual
atomic core, leading to a reduction of the near threshold
cross section. This effect has been neglected in the results
of Ref. 18, thereby providing one explanation for the
much larger predicted two-photon detachment cross sec-
tion near threshold. The free-electron results'® provide
another explanation. Apparently the direct and exchange
interactions of the detached electron with the residual
core (which are included in the HF calculations) result in
a large decrease in the predicted cross section near
threshold. Furthermore, current experimental measure-
ments?’ are capable of distinguishing between theories
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FIG. 11. Total two-photon detachment cross sections for F~
for linearly polarized incident light. Solid (dashed) curve,
present dipole length results including all processes [only the
lowest-order process (1)] in Table I and employing experimental
binding energies. Dotted-dash curve, free-electron results of
Crance (Ref. 19). Crosses, HF results of Crance (Ref. 19).
Dash-double-dotted curve, Robinson and Geltman (Ref. 18).
Experimental point, Kwon et al. (Ref. 27).
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which incorporate such interactions and those which do
not.

V. DISCUSSION AND CONCLUSIONS

We have presented two-photon ionization cross sec-
tions for the 3p subshell of argon and two-photon detach-
ment cross sections for the 2p subshell of F~ in which the
effects of electron correlations have been presented in de-
tail. All of these effects have been calculated using varia-
tionally stable techniques to carry out the required sum-
mations over intermediate states implicitly. Such varia-
tionally stable techniques have permitted us to obtain
much more reliable results for the intermediate-state res-
onance region in the case of argon than in a previous cal-
culation by one of us.!?

We have demonstrated here the importance of
intermediate-state shake-up interactions for the p('S)
final-state channel cross sections. These interactions are
particularly important for obtaining reasonable agree-
ment of dipole length and velocity results. They also are
responsible for the significantly lower total cross sections
near threshold predicted here for argon as compared with
the previous results of one of us,'? with which we would
otherwise agree from threshold up to the onset of the res-
onance region.

We conclude firstly that for all atoms or ions having a
pS('S) initial configuration, the p ('S) final-state channel
is the most sensitive to the effects of electron correlations.
This is consistent with the discussion presented by
Starace and Jiang.'"> Hence experimental measurements
employing circularly polarized light are not as useful as
those employing linearly polarized light so far as provid-
ing a test of theoretical handling of electron correlation
effects. [This is so since the p ('S) channel is not excited
in two-photon processes in the case of circularly polar-
ized photons.] Conversely, theoretical predictions for the
case of circularly polarized light, because they appear to
be much less sensitive to electron correlation effects, can
provide a much more reliable normalization for relative
experimental measurements than predictions for linearly
polarized light. Secondly, we conclude that for two-
photon detachment of negative ions, the interaction of
the detached electron with the residual atomic core must
be described at least in the lowest-order HF approxima-
tion if agreement with experiment is to be obtained.

Finally, we have shown that the various theoretical
predictions for the two-photon ionization cross section of
argon differ significantly in the resonance region. We ex-
pect that our present variationally stable results are fairly
reliable in this energy region. However, this expectation
requires confirmation by other researchers.
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APPENDIX

We give here for reference those angular factors
defined in the text, most of which cannot be found in
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standard references.’®> All angular factors were calculat-  in terms of their matrix elements,

: . : : 56,57
ed analytically using graphical techniques. (Mo N )= __(%)1 PR YA np, Al mp)

1. Equation (16) coefficients +(2 )172R z(lénp,npki) (A3)
The coefficients defined in Eq. (16) are given by and
1 L1 f iy = (A f
a, (LL)=GILDAI|| 1) [, I ] (A1) (Mlvsaldg )= (Aalvgs A7) - (A4)
The matrix element on the right in Eq. (A4) is equal to
and that given in Eq. (A3) upon making the replacements
i—fand f—i.

b, =) |IcHD, (A2)

2. Equation (22) coefficients
where /|, may have the values O or 2.

The operators v,; and vy, defined in Eq. (16) are given The coefficients defined in Eq. (22) are given by

J
WAREEE (A5)

I, 11

Ak, L, LL)=(6[LD(1)| CYI )| CH 1)UL || CH 1, || T L1 1”(—1)"%8,(,+

3. Equation (35) coefficients
The coefficients defined in Eq. (35) are given by
B(k, 1,1, L)= 4(6)"A(I||CH D CHID U |C L] L L1

X3 3 3 (=DWEHEL 22— (— DE) 22— (—1)E)2
(LS)(L'S)L'S’

—

e o 1 L'
X(pHLS){Ip*L'S"))Np3L'S)|}p"L’'S)) i L
L1 1
L 11
11,1
1 L 1

1 L1

N 1ok

=8, (6)X 1| C I, || CH )L 2 [68,0— L(1]|C¥[|1)21(68,,—1) . (A6)

4. Equation (42) coefficients
The coefficients defined in Eq. (42) are given by
Clk, 11,1, LLY= (6) U CHIINA[CHI ) [ CHIDA [ C Y DILT A~ 1)

I, 11 11, 1)1 1, 1
AR (A7)

X L 11 1 L1
5. Equation (47) coefficients

2
?akl

+(—1)L+‘|

The coeflicients defined in Eq. (47) are given by

(A8)

11, k
11, 1

d k1, L= (ICH DT Al C i ICH D, cHn [%5k1(—1)k+

These coefficients are equal to A4 (k,l,,lz,l,L)/(a,lb,] ), where A is given by Eq. (A5), a; is given by Eq. (A1), and by, is
given by Eq. (A2).




6286

1See, e.g., the following collections of review articles and confer-
ence proceedings: Multiphoton Ionization of Atoms, edited by
S. L. Chin and P. Lambropoulos (Academic, New York,
1984); Proceedings of a Conference on Multielectron Excita-
tions in Atoms, Seattle, 1986, edited by W. E. Cooke and T. J.
Mcllrath [J. Opt. Soc. Am. 4, 701 (1987)]; Multiphoton Pro-
cesses, edited by S. J. Smith and P. L. Knight (Cambridge
University Press, New York, 1988); P. Agostini, in Funda-
mental Processes of Atomic Dynamics, Vol. 181 of NATO Ad-
vanced Study Institute Series B: Physics, edited by J. S.
Briggs, H. Kleinpoppen, and H. O. Lutz (Plenum, New York,
1988), pp. 483-511; J. L. Dehmer, S. T. Pratt, M. A.
O’Halloran, and F. S. Tomkins, in ibid., pp. 513-540; A.
Giusti-Suzor, in ibid., pp. 217-234.

2A. L’Huillier, L. A. Lompré, G. Mainfray, and C. Manus,
Phys. Rev. Lett. 48, 1814 (1982); Phys. Rev. A 27, 2503
(1983); J. Phys. B 16, 1363 (1983); L. A. Lompré, A.
L’Huillier, G. Mainfray, and J. Y. Fan, J. Phys. B 17, L817
(1984).

3T.S. Luk, H. Pummer, K. Boyer, M. Shahidi, H. Egger, and C.
K. Rhodes, Phys. Rev. Lett. 51, 110 (1983); C. K. Rhodes,
Science 220, 1345 (1985).

4p, Lambropoulos, Phys. Rev. Lett. 55,2141 (1985).

35G. A. Victor, Proc. Phys. Soc. London 91, 825 (1967).

M. S. Pindzola and H. P. Kelly, Phys. Rev. A 11, 1543 (1975).

7B. Ritchie, Phys. Rev. A 16, 2080 (1977).

8E. J. McGuire, Phys. Rev. A 24, 835 (1981).

9R. Moccia, N. K. Rahman, and A. Rizzo, J. Phys. B 16, 2737
(1983).

10A. L’Huillier, L. Jonsson, and G. Wendin, Phys. Rev. A 33,
3938 (1986).

1Ip. Gangopadhyay, X. Tang, P. Lambropoulos, and R. Shake-
shaft, Phys. Rev. A 34, 2998 (1986).

12A F. Starace, and T.-F. Jiang, Phys. Rev. A 36, 1705 (1987).

13A. L’Hullier and G. Wendin, J. Phys. B 20, L37 (1987); Phys.
Rev. A 36, 4747 (1987).

14K . C. Kulander, Phys. Rev. A 36, 2726 (1987); 38, 778 (1988).

I5A. L’Huillier, X. Tang, and P. Lambropoulos, Phys. Rev. A
39, 1112 (1989).

16M. Crance and M. Aymar, J. Phys. B 18, 3529 (1985).

7M. G. J. Fink and P. Zoller, J. Phys. B 18, L373 (1985).

18E. J. Robinson and S. Geltman, Phys. Rev. 153, 4 (1967).

19M. Crance, J. Phys. B 20, 6553 (1987); 21, 3559 (1988).

20A. L’Huillier and G. Wendin, J. Phys. B 21, L247 (1988).

21T -F. Jiang and A. F. Starace, Phys. Rev. A 38, 2347 (1988).

22y, L. Dehmer, S. T. Pratt, and P. M. Dehmer, Phys. Rev. A
36, 4494 (1987).

23§, T. Pratt, P. M. Dehmer, and J. L. Dehmer, Phys. Rev. A
35, 3793 (1987).

24C. Y. Tang, P. G. Harris, A. H. Mohagheghi, H. C. Bryant, C.
R. Quick, J. B. Donahue, R. A. Reeder, S. Cohen, W. W.
Smith, and J. E. Stewart, Phys. Rev. A 39, 6068 (1989).

25R. Trainham, G. D. Fletcher, and D. J. Larson, J. Phys. B 20,
L777 (1987).

26C. Blondel, R.-J. Champeau, M. Crance, A. Crubellier, C.
Delsart, and D. Marinescu, J. Phys. B 22, 1335 (1989).

CHENG PAN, BO GAO, AND ANTHONY F. STARACE 41

27N. Kwon, P. S. Armstrong, T. Olsson, R. Trainham, and D. J.
Larson, Phys. Rev. A 40, 676 (1989).

28R. M. Sternheimer, Phys. Rev. 84, 244 (1951).

29A. Dalgarno and J. T. Lewis, Proc. R. Soc. London, Ser. A
233, 70 (1955).

30T, N. Chang and R. T. Poe, J. Phys. B 9, L311 (1976); Phys.
Rev. A 16, 606 (1977).

31T, P. Das and R. Bersohn, Phys. Rev. 102, 733 (1956).

32A. Dalgarno and J. T. Lewis, Proc. Phys. Soc. London, Ser. A
69, 628 (1956).

333, Nuttal and H. L. Cohen, Phys. Rev. 188, 1542 (1969).

34B. Gao and A. F. Starace, Phys. Rev. Lett. 61, 404 (1988);
Phys. Rev. A 39, 4550 (1989).

35C. Pan, B. Gao, and A. F. Starace, Bull. Am. Phys. Soc. 34,
1384 (1989).

36W. L. Peticolas, R. Norris, and K. E. Rieckhoff, J. Chem.
Phys. 42, 4164 (1965), Appendix.

37C. Froese Fischer, The Hartree-Fock Method for Atoms (Wi-
ley, New York, 1977).

38A . F. Starace, in Corpuscles and Radiation in Matter I, Vol. 31
of Handbuch der Physik, edited by W. Mehlhorn (Springer,
Berlin, 1982), Secs. 16 and 17 and references therein.

39B. Gao, C. Pan, C. R. Liu, and A. F. Starace, J. Opt. Soc. Am.
B 7, 622 (1990).

40E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14,
177 (1974).

411, M. Frantz, R. L. Mills, R. G. Newton, and A. M. Sessler,
Phys. Rev. Lett. 1, 340 (1958).

42B. A. Lippmann, M. H. Mittleman, and K. M. Watson, Phys.
Rev. 116, 920 (1959).

43R. T. Pu and E. S. Chang, Phys. Rev. 151, 31 (1966).

44H. J. Silverstone and M. L. Yin, J. Chem. Phys. 49, 2026
(1968).

455. Huzinaga and C. Arnau, Phys. Rev. A 1, 1285 (1970).

464, Burgess, Proc. Phys. Soc. London 81, 442 (1963).

47C. E. Moore, Ionization Potentials and Ionization Limits De-
rived from the Analyses of Optical Spectra, Natl. Bur. Stand.
Ref. Data Ser., Natl. Bur. Stand. (U.S.) Circ. No. 34 (U.S.
GPO, Washington, D.C,, 1970), p. 6b.

48A. L’Huillier and G. Wendin, Phys. Rev. A 36, 5632 (1987).

49P, Lambropoulos, Adv. At. Mol. Phys. 12, 87 (1976).

50U. Fano, Phys. Rev. 124, 1866 (1961).

SIH. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 4,
539 (1975).

52E. P. Wigner, Phys. Rev. 73, 1002 (1948).

538, Olariu, I. Popescu, and C. B. Collins, Phys. Rev. D 20, 3095
(1979).

54D. W. Norcross, Phys. Rev. A 7, 606 (1973), and references
therein.

53], C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hill, New York, 1960), Vol. I, Appendix 21.

563, S. Briggs, Rev. Mod. Phys. 43, 189 (1971).

STA. P. Yutsis, I. B. Levinson, and V. V. Vanagas, The Theory of
Angular Momentum (Israel Program for Scientific Transla-
tion, Washington, D.C., 1962).



