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Variational methods for high-order multiphoton processes
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Methods for applying the variationally stable procedure for Nth-order perturbative transition matrix elements of
Gao and Starace [Phys. Rev. Lett. 61, 404 (1988); Phys. Rev. A 39, 4550 (1989)] to multiphoton processes involving
systems other than atomic H are presented. Three specific cases are discussed: one-electron ions or atoms in which
the electron-ion interaction is described by a central potential; two-electron ions or atoms in which the electronic
states are described by the adiabatic hyperspherical representation; and closed-shell ions or atoms in which the
electronic states are described by the multiconfiguration Hartree-Fock representation. Applications are made to
the dynamic polarizability of He and the two-photon ionization cross section of Ar.

1. INTRODUCTION

Gao and Starace have recently presented a variationally
stable procedure for calculating Nth-order perturbative ma-
trix elements and have applied it extensively to the calcula-
tion of high-order multiphoton processes involving atomic
H.12 The two most usual alternative theoretical procedures
for calculating an Nth-order perturbative matrix element
are to perform the N - 1 summations over intermediate
states explicitly in some representation and to apply the
Dalgarno-Lewis3 procedure iteratively4 N - 1 times. In
either case, great care is required at energies close to inter-
mediate-state resonances. In contrast, the variational pro-
cedure of Gao and Starace",2 is noniterative and, for any N,
requires the determination of only two unknown functions.
Furthermore, the formulation for the matrix element is vari-
ationally stable with respect to any errors in the determina-
tion of these two unknown functions. Finally the method is
numerically accurate even at energies close to intermediate-
state resonances. For the special case of N = 2, this varia-
tional method may be related to those developed for scatter-
ing processes by Nuttall and Cohen5 and by Schwinger, 6 as
has been discussed in detail elsewhere.2

We present here in explicit detail methods for applying
the variationally stable procedures2 for Nth-order perturba-
tive matrix elements to multiphoton processes involving at-
oms other than atomic H. Three general cases are dis-
cussed: one-electron atoms or ions in which the excited
electron's interaction with the residual core is described by a
central potential; two-electron atoms or ions in which the
electronic states are described by the adiabatic hyperspheri-
cal representations; and closed-shell, many-electron atoms
or ions in which the electronic states are described in a single
or multiconfiguration Hartree-Fock (HF) representation.
In all cases, including the atomic H case treated previous-
ly,12 the variational procedure is applied to the calculation
of radial matrix elements only, after angular integrations
have been performed.

In Section 2 we review briefly the usual procedures for
calculating high-order perturbation matrix elements as well
as the variationally stable procedure of Refs. 1 and 2. In
Section 3 we discuss the application of the variationally

stable procedure to one-electron, two-electron, and closed-
shell, many-electron systems. In particular, we present re-
sults for the dynamic polarizability of He and the two-pho-
ton ionization cross section of Ar. Finally, in Section 4 we
summarize our results and present some conclusions.

2. HIGH-ORDER PERTURBATION THEORY

A. Brief Review
The standard perturbation theory gives the Nth-order per-
turbative amplitudes in the form

if(N =fJNE -H JN*E2-HJJ E-H1 | )

(1)

where 1/(Ej - H) is the Green's function for the Hamiltonian
H and the E's are the intermediate state energies. The D1 's
represent perturbative interaction operators, which may be
different from one another.

Among the usual approaches to evaluating Eq. (1) are the
following.

1. Green's Function Method
The Green's function approach is used when we know the
analytic form of the Green's function. From Eq. (1), the
Nth-order transition amplitude is obtained by an N-fold
integration. The trouble with this approach is, first, that
there are a limited number of potentials that have analytic
Green's functions and, second, there are a large number of
potentials that cannot be approximated by the sum of one of
these "good" potentials and some perturbation. Addition-
ally, the N-fold integration, even though straightforward,
can be cumbersome, if not impossible. The pure Coulomb
potential, which may be the most important one in atomic
physics, is one example, although results have been obtained
for two-photon processes. 8

2. Explicit Summation Method
The explicit summation method is based on the eigenfunc-
tion expansion of the Green's function, i.e.,
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(2)
1 = ) ID l

E-H E-Ej
J 

The expansion is then truncated, and the explicit summa-
tion is performed to get the transition matrix element. The
virtue of this method is its generality. However, the conver-
gence of the method often depends sensitively on the
representation chosen as well as on the size of the truncated
basis.

3. Dalgarno-Lewis Method
The Dalgarno-Lewis method3 4 reduces the problem of eval-
uating Ti f() to that of solving N - 1 coupled inhomogen-
eous differential equations. Defining

1X1) E -H Ali)'

IX2) - D2 lX0),
2 

I )N-1) - E N-11HN-2) 3
EN1-

the functions IX,) for 1 • n < N - 1 satisfy the following
differential equations:

(E1 - H)1X1) = Dili),

(E2 - H)IX2) = D2 l Xl)

(EN-1 - HAN-1) = DN-11)XN-2). (4)

The transition matrix element is then given by

Tif b(N) = (tlDNIXN-1). (5)

The Dalgarno-Lewis method 3 is one of the most widely
used methods in perturbation calculations in atomic phys-
ics. However, it must be used with care for high-order N, for
the following reasons. First, it is not stable near intermedi-
ate-state resonances. Second, the error in the calculation
accumulates order by order. Third, beyond the second or-
der9 the asymptotic forms of the IX)'s are generally not
known, which restricts the ability to solve the differential
equations accurately.

B. Variational Method
Defining the two functions

- 1 1
IX) DN-1 ... E 2 _ D11i) (6)EN.-,-H E2 -H E 1-H

and

1 = (fDNE HDN-1 ... D3E 2 HD2E H

(7)

it is easy to show",2 that the following functional expression
for T. 1f(Iv) is variationally stationary with respect to the
variations of X and X':

Tif (N)(X, X') = (fIDIX) + (XID1Ii)

- (E1 - H) (E2 - H)

1 1_. -_ (EN--H)X~D3 DNl / (8)

Namely,

T f(N)( + x, X' + 6X') = T_f(N )(X, X') + 0(6X8X'). (9)

Equation (8) no longer contains the Green's functions or
summations over complete sets of intermediate states, and it
has only two unknown functions, regardless of the order of
the process. Unlike the Dalgarno-Lewis procedure, where
the completeness of the summation has to be considered at
each order, the completeness of the (N - 2)-fold summation
is automatically guaranteed in our variational formula-
tion.1 2 As a result, a smaller basis set can be used, and
better convergence can be obtained near the intermediate
resonances. For the special case of N 2, Eq. (8) reduces to
the form

T ,.f(2)(X, X') = (fD 21X) + ('D 1 1i) - (X'I(E 1 - H)IX). (10)

Equation (10) was discovered by Nuttall and Cohen in the
context of electron scattering theory.5

Even if Eq. (8) is formally correct in general, its usefulness
beyond second order depends largely on our ability to treat
the inverse of the interaction operator, i/Di. This has to be
dealt with case by case. The examples discussed in Section
3 illustrate the required procedure.

Since our major concerns here are multiphoton processes,:
we will assume for the rest of this paper that (unless speci-
fied otherwise) all the perturbation operators are the same,
i.e.,

iDj=D, 1•j<N,

where D = e * ri is the electric dipole operator. Note,
however, that other operators do get involved in multipho-
ton calculations if, e.g., correlation effects are considered;
furthermore, D ought to be replaced by D* in the case of
photon emission.

3. MULTIPHOTON PROCESSES IN LOWEST-
ORDER PERTURBATION THEORY

Applications of the variationally stable procedure of Refs. 1
and 2 to Nth-order perturbation amplitudes require in gen-
eral that an analytic calculation of the angular part of the
transition.amplitude in Eq. (1) be performed first. That is,
angular expansions of the Green's functions and the wave
functions have to be made and the angular integrations
carried out before one applies the variational principle to the
remaining radial part of the matrix element. In proceeding
this way, one has then to deal only with the inverse of the
radial part of the perturbation operator rather than with the
operator itself. (Note, however, that in the special case of
second-order processes, N = 2, the angular part can be incor-
porated explicitly in the variational method, since no inverse
of the interaction operator is involved.) In this section we
indicate the procedure required in three important cases:
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one-electron ions or atoms in which the electron's interac-
tion with the residual core is described by a central potential;
two-electron ions or atoms in which the electronic states are
described by the adiabatic hyperspherical representation;
and closed-shell ions or atoms in which the electronic states
are described by the single or multiconfiguration HF
representation. We also comment on the use of the 2N-
photon nonlinear susceptibilities to obtain N-photon ioniza-
tion cross sections. Lowest-order perturbation theory is
assumed throughout this section, although the use of the
variationally stable procedure described here is not restrict-
ed to lowest-order perturbation theory amplitudes.

A. One-Electron System in a Central Potential

1. Separation of Angular and Radial Parts
For the central potential v(r),

H -l/ 2 V2 + v(r),

= rYm'
r

and

E-H - , mE-hj(ll
where

_ 1 d2 1(1 +1)hi=----+v(r)+
2 dr 2 2r2

The dipole operator can be written as

D = rCm 1,

where

Cm 1 = (47r/3) 1 /2ym,

(11)

angular factor and summing over all the possible combina-
tions of the intermediate angular momenta.

2. Evaluating the Radial Part
Expand X(r) and X(r) as

M

X(r) =E ajoj(r),
j=1

M

'() = bj(r),
j=1

where 0j and Oj can be chosen to be
defined by

0j(r) = NjrlN-l+je-fr

Oj(r) = Njr+e- r,

(21)

(22)

the Slater orbitals

(23)

(24)

(12) where Nj and N' are some normalization constants whose
main purpose is to prevent computer overflow. and 13' are
parameters that can be complex and that are chosen intu-
itively for each specific calculation. Different it's can also be

(13) used in a single expansion if needed. We will not dwell
further on the choice of the basis functions since this is an art
in itself.

Substituting these expansions into Eq. (20), and requiring
the result to be variationally stable, i.e., requiring that

(14)
at(N) at(N) 

= = 0,
aaj abj

(25)

(15) one obtains a set of linear equations:

(16)

and where me = 0, +1j -1 for linearly, right circularly, and
left circularly polarized light, respectively. The angular in-
tegrations can then be calculated, using the standard result

(YimIC mlYm) =

1 1 (1,

mly M 0
(17)

The calculation of T(N) is then reduced to the calculation
of the radial transition amplitude:

t(N =(u r I hr... r -hI r -hr ui).t f )=>iEN- - h E- -h2 El : h,|)

(18)

Defining

1 1 1A =(E -h,)-(E2-h)... -(EN, -hl
r 2r r '-d

(19)

we have then the following variationally stationary radial
functional:

t(1v)[X(r), X'(r)] = (uflrlX) + (Irjuj) - (XIAIx). (20)

T(N) is obtained by multiplying t(N) by the corresponding

M

> Aijaj = ci,
j=1

M

E bAij = dj,
i=l

where

Aij = (aO (El - hl)

ci = (rlu),

dj = (ufIrhkj).

(26)

(27)

1 1 1I (E2 - h12)-. . . - (EN.-1 - hlN,_) Oj/'

(28)

(29)

(30)

It is easily verified that

M M M

E3 ajdj = E bjcj = E biAijaj.
j=1 j=1 ij=i

(31)

Therefore only one equation, e.g., Eq. (26), must be solved.
The result for t(N) is then given by

M

t - E ajdj.
j=1

(32)

In the evaluation of matrix elements Aij, certain terms
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may have integrands that are singular at the origin. These
are set to zero, based on the consideration that AIX(r)) =
rlui) must be regular at the origin. Alternatively, one may
start the integration from a very small r, which should not
affect the result, since in the length gauge the contribution
to the transition amplitude from the small r region is small.
The two alternative procedures give the same results. How-
ever, the former procedure, i.e., dropping integrands singu-
lar at r = 0, is preferable numerically for high-order N.

B. Two-Electron Systems in Hyperspherical Coordinates

1. Adiabatic Hyperspherical Coordinate Representation
Most of our knowledge about atoms and ions has been based
on the independent-electron model. When we say that the
ground-state configuration of He is s2, the independent-
electron picture is already implied. Improvement on this
model can be achieved by the configuration interaction tech-
nique, which is basically a rediagonalization of the Hamilto-
nian within each LS manifold. The point is that when the
configuration interaction is strong, the classification scheme
based on the independent-electron picture is no longer de-
sirable. This is where hyperspherical coordinates offer a
refreshing alternative.7 Several thorough reviews of this
subject have recently been published.'0

In ordinary r space, a two-electron system is described by
the Hamiltonian

H =-2 V1
2 - V222 - - 1 + 1 

2 2 r, r2 r12

2 U + 1/41

B2 JF,(R)[dR2 R 2 #

+ s [(k, 0 + 2(d0 ) (R) = 0. (40)

Clearly, each F,,(R) is governed largely by the potentials
U,(R), whereas the coupling between different channels is
governed by the radial derivative matrix elements inside the
sum over A'.

2. Two-Photon Amplitude
The simplest case to treat is the amplitude for N = 2, which
is defined by

Tif(2) = D 1 Di, (41)

where Ei is the energy of the initial state and w is the photon
energy.

Equation (41) can be written in a variationally stationary
form as",2

T._/ 2)(X, X') = (fIDIX) + ('IDli) - (X'I(Ei +,w - H)IX),
(42)

where

(33) IX) = 1 Dli),Ei+w -H (43)

The hyperspherical coordinates (R, a, 1 2) are defined by

R = (r,2 + r22)1/2' a = tan-'(r 2/rl).

In this set of coordinates, the Hamiltonian becomes7 ' 0

1 [02 5 a 2 Ci
2 L0R2 R R R 2 Rj

('I = ( 1D(EiDE+H(34)
(44)

[Equations (42)-(44) represent special cases of the more
general equations (6), (7), and (10).]

(35) In hyperspherical coordinates,
functions as

we can expand the wave

where

2 _1 d 2 2 d L2 L 2
2

A2 = -sin a cos a + f + 2
sin a cos2 c da de cos2

a sin2 a 

(36)

2Z + 2Z - 2
sin a cos a [1 - sin(2a)cos O1211/2

i) = (R 5/2 sin a cos a)-' I F,,(R),,,

If) = (R51 2 sin a cos a)-' F.f(R)¢>

(37)

The adiabatic channel functions 0,(R; a, P1, 2) are defined
as the eigenfunctions of the angular equation7 "10

(-A 2 + RC) (0/sin a cos a) = [U,(R) + 4](4/sin a cos a),

(38)

in which R is treated as a parameter. The eigenvalue U,(R)
forms a radial potential. The wave function can generally
be written as the following expansion in the channel func-
tions:

i = (R51 2 sin a cos a)-' E F,(R)0,(R; , P1 2), (39)

where F,(R) satisfies

IX) = (R512 sin a cos a)-' >) X,(R)¢,,

IX') = (R51 2 sin a cos a)' 1 X,'(R)O,,

whereupon the first two matrix elements in Eq.
given by

(X'IDIi) = Z J I ,,,L(R)X,,'(R)RF,,i(R)dR,

(AlDIX) = > J I,L(R)FAf(R)RX,(R)dR,

(47)

(48)

(42) are

(49)

(50)

(45)

(46)
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where I, AL(R), which has been given explicitly by Park et
al.," comes from the angular integration using the length
form (L) of the electric dipole operator. The third matrix
element in Eq. (42) is given by

1 d' U,,,+lI41
(X'I(El - = E z , X(R) E + w + - +2dCR2 R2 J

X A,(R) + E /K(R) 1 O( dR ),

+ ay R ) dR]|)(1

In the adiabatic approximation,7 only a single channel is
used in the expansions of the wave functions. We have
retained all the indices in the equations above to show that
the same formulation would also work in the case in which
channel couplings are included.

Our calculations have been performed in the adiabatic
approximation, i.e., we used only the lowest channel for each
symmetry involved. For a two-photon process from the lSe
ground state, this means that the intermediate channel used
is the lowest 'Po channel.

3. N-Photon Amplitude in Adiabatic Approximation
The formulation for an N-photon amplitude is greatly sim-
plified in the adiabatic approximation. Defining

A 2 [dR2 R2 ( l) 2 ) (52)

we see from Eqs. (49) and (50) that in the adiabatic approxi-
mation the three-photon transition amplitude is given by

Tad 3
= II LR 1 d

\PflL2w E h+2w-

Xi LR 1 I LR i . (53)
il2"A Ej + h ad IA11i 

It can be written in a variationally stationary form as

Tad(3) = (ftIlt2 L RIX) + (X/'I~IiLRli)

1-24('(E +w-h ad) 2 E+2 h d|\

(54)

Generalization to N-photon processes is trivial.

4. Dynamic Polarizability of He
As an example of the use of this variationally stable proce-
dure within the adiabatic hyperspherical approximation, we
present results for the frequency-dependent or dynamic po-
larizability12 of the He atom. The dynamic polarizability, of
course, may be expressed in terms of a sum of two ampli-
tudes of the type given in Eq. (41), i.e., Ti-i(2)(+W) +
Ti-i (2)(-w). As has been pointed out,13 14 while the dynamic
polarizability has long been known15 for its relation to the
photoionization cross section and other atomic properties,
there have been relatively few calculations of dynamic as

compared with static polarizabilities, despite increased ex-
perimental interest in ac Stark shifts and harmonic genera-
tion rates, both of which depend on dynamic polarizabilities.
Furthermore, those calculations of the dynamic polariza-
bilities that do exist often avoid the resonance region, which
is usually the most important one for the phase matching on
which harmonic generation depends.'4 "16

Our results for the dynamic polarizability of He are pre-
sented in Fig. 1 for the photon energy range 0 < w < 0.9 a.u.
These results are compared with others'7 -2 ' over the photon
energy range 0 S w S 0.7 a.u. in Table 1. Presented also in
Table 1 are our results obtained by employing the Dalgarno-
Lewis procedure3 to sum over intermediate states, again
using a basis of adiabatic hyperspherical states.

Examination of Table 1 shows that both of our present
adiabatic hyperspherical calculations give better results
than the simple self-consistent field calculations.'8 2' They
do not do so well as more sophisticated calculations,' 7"19- 2' at
least for low photon energies. For w 2 0.60, the impending
onset of the resonance region causes increasing differences
among results of the various calculations. The only other
detailed results in the resonance region (shown in Fig. 1) of
which we are aware are those of Reintjes22 ; because of the
resonance oscillations, those results are difficult to compare
in detail with ours.

It is interesting to compare our two adiabatic hyperspheri-
cal results for the dynamic polarizability of He. As is shown
in Table 1, for w S 0.4 a.u. direct solution of the Dalgarno-
Lewis equation for the intermediate-state function ()
gives better agreement with experiment than the variation-
ally stable method. Clearly, this indicates that if one has a
good representation for the function X, then that method is
preferable to expanding the X's in Slater orbitals. For >
0.4 a.u., however, the variationally stable method gives bet-
ter agreement with experiment, no doubt because of the
approach of the resonance region. In the resonance region
itself, the variationally stable procedure is the only one of
the two methods that gives converged results.

C. Multiphoton Processes for Closed-Shell Atoms
Ignoring all relativistic effects (including the spin-orbit cou-
pling), a many-electron atom is described by the Hamilto-
nian

H= (1 2
i=l

e)

E
.U

'0

N

0
n

2 -

0 .

-1 

-2 -

(55)

0.0 0.2 0.4 0.6 0.8
PHOTON ENERGY (a.u.)

Fig. 1. Dynamic polarizability of He as calculated using the varia-
tionally stable procedure within the adiabatic hyperspherical ap-
proximation.
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Table 1. Dynamic Polarizability of Helium (a.u.)

Present Work Chan and Dalgarno Starkschall Reinscha
w (a.u.) D-Lb Var.c Dalgarnod and Victore Chungf and Gordong SCFh MC-SCFi Expt.a

0.00 1.3679 1.3559 1.3767 1.323 1.3841 1.385 1.322 1.383 1.384
0.05 1.3720 1.3599 1.3835 1.323 1.3868 1.389
0.10 1.3843 1.3720 1.3970 1.336 1.3990 1.401 1.336 1.398 1.399
0.15 1.4054 1.3927 1.4172 1.356 1.4192 1.422
0.20 1.4362 1.4231 1.4442 1.383 1.4483 1.450 1.380 1.448 1.449
0.25 1.4783 1.4644 1.4847 1.417 1.4887 1.490
0.30 1.5337 1.5189 1.5319 1.464 1.5407 1.543 1.463 1.540 1.542
0.35 1.6060 1.5900 1.5994 1.525 1.6095 1.612
0.40 1.7001 1.6825 1.6872 1.599 1.6980 1.703 1.600 1.696 1.700
0.45 1.8242 1.8043 1.8019 1.701 1.8147 1.818
0.50 1.9917 1.9688 1.9503 1.836 1.9706 1.969 1.833 1.966 1.973
0.55 2.2273 2.1999 2.1596 2.018 2.1872 2.188 2.013 2.182
0.60 2.5812 2.5470 2.4700 2.274 2.5091 2.515 2.268 2.501 2.502
0.65 3.1320 3.0382 3.0550 2.659 3.022
0.70 4.3816 4.1106 4.1530 3.332 4.079 3.884

a Ref. 21, Table I.
b Dalgarno-Lewis procedure.
c Variational procedure.
d Ref. 17.
e Ref. 18.
f Ref. 19.
g Ref. 20.
h Self-consistent field.
i Multiconfiguration self-consistent field.

For such a nonrelativistic system, the total orbital angular
momentum L and total spin S and their z components
MLMS, and of course the total energy E and the total parity
II = (-1) E

1 i, are exactly conserved quantities. This implies
that both the Hamiltonian H and the Green's function 1/(E
- H) are block diagonalized in the set of quantum numbers
(LSMLMSII). The difficulties in dealing with such a system
stem from the two-particle potential 1/rij, which couples all
the independent-particle configurations with the same set of
quantum numbers (LSMLMSII).

The selection rules for each photoabsorption are

would proceed the same way as in Subsection 3.A, except
that now the angular factors should be those appropriate for
a closed-shell atom or ion:

(nolo 4 1,+lnl(1P)Dlnol0
4l0+2 (iS) )

= (-1)lm-(41 0 + 2)1/2[1, lo11 2(111C11110) (unlrlUnol)

= (-1)1+1-(4l1 + 2)1/2[1]-1/2[1]1/2( 0
0

(60)

AL = 0, 1 (except that L = L' = 0),

AS = 0,

AML = m,,,

AM = 0,

(56) and

(57) (nolo 4 lo+lnhl(1L`)IDlnolo 4
1,+lnl('L))

(58)
= ( 1)IO-ML, 1 L', LI1/2( M

(59)

where my = 0, +1, -1 for linearly, right circularly, and left
circularly polarized light, respectively.

To be specific, we will concentrate on multiphoton pro-
cesses for a closed-shell atom with the outermost-shell con-
figuration n010410+2(1S). For the many-electron case, various
levels of approximation may be employed. We discuss three
such approximations: the central potential approximation
and the frozen-core HF approximation, neither of which
treats electron correlations, and the multiconfiguration Har-
tree-Fock (MCHF) approximation, which does treat elec-
tron correlations. In particular, we discuss specifically both
initial- and intermediate-state correlations.

1. Central Potential Model
In an effective central potential description of the atom,
such as the Herman-Skillman potential model23 and the
density functional theory,24 the multiphoton calculations

(61)

where unl(r) refers to the radial wave function for the elec-
tron in the subshell ni, [1] = 21 + 1, and [11, 12, . - -] = [l] [12] ....

In obtaining Eq. (60), we have used

(62)

Equations (60) and (61) can be obtained easily by using
diagrammatic angular momentum techniques.2 5' 26

2. Frozen-Core Hartree-Fock Approximation
The interaction of an electron excited from a closed-shell
atom or ion with its residual ionic or atomic core may be
described by an LS-dependent HF potential. This poten-
tial is obtained by defining the excited electron's wave func-

1 L

m ML
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tion ul as the solution of the equation resulting from the
variational principle,

3 ( nlo4 1 +lul('L) IHlnlo4l+lul(1L)) = 0, (63)

where the unexcited orbitals are defined by the HF solution
for the ground state of the initial atom or ion. Equation (63)
leads to a radial, single-electron Hamiltonian,

h LS = d _ Z + 1(1 + 1) + VHF LS(), (64)
2 dr 2 r 2r2

from which the radial part of the excited electron's wave
function, ut(r), may be calculated. In Eq. (64) VHFLS(l) is
the LS-dependent HF one-electron, nonlocal potential for
an excited electron having an orbital angular momentum 1.
VHFLS may be written as a linear combination of direct and
exchange radial operators,26 ' 27 which are defined by their
actions on an arbitrary radial function f(r) as follows:

Ji f(r) = - Y8(ui, uj; r)f(r), (65)
r

KiKf(r) = - Y(ui, f; r)ui(r). (66)
r

In Eqs. (65) and (66) the functions Pf are defined by

Y(a, b;r) a(r')b(r')dr', (67)
r Jo r>+

where r> = max(r, r') and r< = min(r, r'); and the functions
us(r), 1 < i S N - 1, are the unexcited radial one-electron
orbitals obtained by solving the HF equations for the ground
state. The particular linear combination of the operators JK
and Kix that defines VHFLS is determined in each case by the
equations resulting from Eq. (63).

Comparing the HF radial Hamiltonian in Eq. (64) with the
central potential model Hamiltonian in Eq. (14), we see that
evaluation of an N-photon transition amplitude is straight-
forward. In Eq. (28) one replaces the central potential mod-
el Hamiltonian by the HF Hamiltonian in Eq. (64). Of
course, since VHFLS is a nonlocal potential, in Eq. (28) it acts
on all radial variables to its right whenever it occurs.

3. Ground-State Correlation Effects
Among the most important electron correlations affecting
multiphoton transition amplitudes are those known as ini-
tial- or ground-state correlations. These may be included in
our variational method by means of a MCHF approach.
Consider as a specific example ground-state correlations in
Ar. We represent the ground state as a linear superposition
of the configurations 3p6 and 3p43d2,

1'0(3p 6
+ 3p 4 3d2 ) = C0o[3p 6 (1S)]

+ E cL',S 4[ 3P4(2S'+ L)3d2(2S'+ L1)(1S)], (68)
L',S'

as has been done for photoionization 28 and for two-photon
ionization2 9 elsewhere. Both the coefficients CL',S' and the
3d orbital(s) are calculated by using the MCHF program of
Froese-Fischer.30 In the frozen-core approximation, when
Eq. (68) is substituted for the ground-state wave function Ii)

in the second term on the right-hand side of Eq. (8), one
obtains

(XID1IT10) ([3p 5el(lP)]lDfll 0 [3p6(lS) + 3p43d2 ('S)])

= a0(X,'1'rI3p) + a1612 ( XE'13d) (3plrl3d), (69)

where ao and al are the factors resulting from the angular
integrations and where XAf' is the one-electron radial wave
function for the el electron in the state described by X'.
Obviously, the second term on the right-hand side of Eq.
(69) contributes only when = 2 because of the overlap with
the 3d orbital and the delta function resulting from the
associated angular integration. Additional ground-state
correlations may be treated by including other doubly excit-
ed configurations in Eq. (68), but the 3d2 configurations are
known to be the dominant ones.2 8'3'

4. Interactions between Intermediate States
A second important class of electron correlations are those
between intermediate-state channels. These are treated
usually by close-coupling methods. We illustrate their
treatment within our variational method for the specific case
of two-photon ionization of Ar. In this case the intermedi-
ate state comprises mainly the two channels, 3p5Ed('P) and
3p5Es('P), which result from single photon excitation of the
ground state of Ar. We therefore represent the intermedi-
ate-state X's in Eq. (10) by a linear combination of X's corre-
sponding to these two channels:

X X[3p5 ed('P)] + X[3p5 es('P)] (70)

X- =_X'[3p5 ed('P)] + X'[3p5es('P)]. (71)

Substituting Eqs. (70) and (71) into Eq. (10) and performing
the angular integrations results in the following expression
for the two-photon amplitude in terms of one-electron radial
matrix elements:

Ti .( 2 )(X, A') = ad(ufrXfd) + aS(uflrXES) + bd(X\d'Irluj)

+ bs(X,'Iruj) - ((Xd'I (Xo'I)

(ei- hd'P + w
\-V

-v IXd)

( - h,"P + wJIX,.) ).

(72)

In Eq. (72), ad and a, are the angular coefficients, given by
Eq. (61), needed to evaluate the first amplitude in Eq. (10);
bd and b, are the angular coefficients, given by Eq. (60),
needed to evaluate the second amplitude in Eq. (10); hdlp
and h,1P are the radial LS-dependent HF Hamiltonians,
given by Eq. (64); uf and ui represent here the one-electron
radial wave functions in the final and initial states, respec-
tively, that take part in these transitions; finally, V repre-
sents the radial part of the electron correlation operator that
couples the two intermediate-state channels,

V= -(8/9)1/ 2 J3pl + (2/25)1/2K3p2 , (73)

where the radial operators J3pl and K3p2 are defined in Eqs.
(65) and (66).

The numerical evaluation of Eq. (72) proceeds in a way
similar to that discussed in Subsection 3.A.2 above. Specifi-
cally, each of the unknown one-electron radial functions Xd,

Xs, X'd, and X.' is expanded in Slater orbitals as in Eqs. (21)-
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Vol. 7, No. 4/April 1990/J. Opt. Soc. Am. B 629

(24). If each of these expansions employs the same number
of basis functions, there will then be twice as many coeffi-
cients to obtain in solving the equivalent of Eq. (26) above.

5. Two-Photon Ionization Cross Section for Ar
As an example of the use of the variationally stable proce-
dure for many-electron atoms, we present in Fig. 2 results for
the two-photon ionization cross section of Ar. The dashed
curve shows our HF-level variationally stable results, where-
as the solid curve shows the results obtained using our varia-
tionally stable procedures for including both ground-state
and intermediate-state interchannel interactions. For com-
parison, we show the transition matrix results of Starace and
Jiang29: the filled circles give their HF-level results and the
filled triangles give their results including ground-state and
intermediate-state interchannel interactions. One sees that
the two results are essentially in agreement except near the
resonances, where the disagreements are due in large part to
different resonance energies in the two calculations. (Star-
ace and Jiang29 shifted their resonance positions to the ex-
perimental values; we cannot do that easily with our varia-
tionally stable procedure.) The major differences between
the two calculations at this level of approximation are in the
resonance region. In this region the variationally stable
method described here gives reliable cross sections. In con-
trast, in Ref. 29 convergence of the Dalgarno-Lewis3 type
equations in the resonance region was difficult to obtain, if it
could be obtained at all, and results for the cross section near
resonances were only crudely indicated. A much more de-
tailed presentation of our results for the two-photon ioniza-
tion cross section of Ar is presented elsewhere.3 2

D. Use of the 2N-Photon Nonlinear Susceptibility
An interesting point to note is that in calculating the ioniza-
tion cross section we do not have to know the final-state
wave function as long as Ei + (N - 1)w < 0. From

'E-H-ie = P E-H + ib(E-H) (74)
we get

ITifi(N)1 = X Imi T(N)t E T(N i), (75)
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Fig. 2. Two-photon ionization cross section of Ar. The curves
indicate our variationally stable calculation in the HF approxima-
tion (dashed curve) and in the approximation including ground-
state as well as intermediate-state interchannel interactions (solid
curve). The filled circles and filled triangles are the transition
matrix method results of Starace and Jiang29 at the same levels of
approximation.

where

T(N) = D 1
Ei + (N -1) - H

xD ... 1 D 1 - D.
""~Ei+2co-H E+,w-H (76)

For a complex amplitude to be obtained, the basis functions
should now be complex, e.g. f3 and 3' are taken to be complex
numbers in Eqs. (23) and (24).

This procedure3 3 has been used extensively to calculate
one-photon ionization cross sections from the imaginary
part of the dipole polarizability.3 4 We have used it to calcu-
late two- and three-photon ionization cross sections for
atomic H.1,2 The major obstacle to its further application is
that, especially for higher-order processes, the imaginary
part is orders of magnitude smaller than the real part, which
makes the convergence of the imaginary part significantly
more difficult to obtain than the convergence of the total
amplitude.

4. SUMMARY AND CONCLUSIONS

We have shown here how the variationally stable method of
Gao and Staracel2 for Nth-order perturbation amplitudes
may be applied to systems other than atomic H, the system
for which the first applications were made. Application to
one-electron atoms, in which electronic motion is described
by a central potential, to two-electron systems, in which
electronic motion is described in hyperspherical coordi-
nates, and to closed-shell, many-electron atoms, in which
electronic motion is described in either single or multiconfi-
guration HF approximation, have been discussed. In all
cases, the applications of the method have been based on
carrying out all angular integrations analytically and apply-
ing the variational principle to the radial amplitude. For
closed-shell atoms, two important classes of electron correla-
tions were discussed: initial-state correlations and interme-
diate-state interchannel interactions. We have also dis-
cussed application of the variational method to the calcula-
tion of 2N-photon nonlinear susceptibilities, from which N-
photon transition probabilities may be obtained.

Two applications of the variational stable method de-
scribed here have been presented. The dynamic polariz-
ability of He has been calculated in the adiabatic hyper-
spherical approximation for photon energies 0 S w S 0.9 a.u.,
and the two-photon cross section of Ar below the one-photon
ionization threshold has been calculated, including both
ground-state and intermediate-state interchannel interac-
tions. We conclude in each case that reliable results in the
region of intermediate-state resonances are much more easi-
ly obtained than by other methods.

Finally, we emphasize that the methods described here for
applying the variational method to Nth-order perturbative
multiphoton processes apply as well as to high-order pertur-
bations induced by other perturbation operators.
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Note Added in proof: We recently learned of two addi-
tional calculations of the dynamic polarizability of He,
namely, those by R. M. Glover and F. Weinhold [J. Chem.
Phys. 65,4913 (1976)] and by M. Jaszufiski and R. McWeeny
[Mol. Phys. 46, 863 (1982)]. Glover and Weinhold provide
rigorous bounds that bracket the results of Chung19 shown in
Table 1 for photon energies below 0.7 a.u. Jaszufiski and
McWeeny provide multiconfiguration, time-dependent HF
results that agree most closely with the multiconfiguration
self-consistent field results of Reinsch 2 l shown in Table 1.
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