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Angular-momentum-insensitive quantum-defect theory for diatomic systems
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We show that the highly excited rovibrational spectra of a diatomic molecule and the closely related slow
atomic collision processes contain more systematics and require less parameters to characterize than the
Rydberg spectrum of an atom. In the case of a single channel, e.g., we show that asingleshort-range parameter
gives a complete description of slow collisions for practically all angular momenta, and covers an energy range
of hundreds of millikelvins. Thesameparameter also describes the highly excited rovibrational spectra in the
threshold region, including states of different angular momenta. Sample applications and predictions of the
theory are presented, including comparisons with experiment.
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With recent developments such as the analytic soluti
of the Schro¨dinger equation for 1/r 6 and 1/r 3 potentials
@1–3#, our understanding of two-atom systems is alrea
conceptually comparable to the quantum-defect the
~QDT! of atomic Rydberg spectra@4#. Namely, the slow
atomic scattering and the rovibrational spectrum of a part
lar angular momentum can be understood in terms of
long-range solutions and a parameter that is a slowly vary
function of energy in the threshold region@5–7,1–3#. In this
work, we show that a two-atom system possesses an
greater degree of systematics in the following sense. Un
the QDT for atomic Rydberg spectra in which differe
angular-momentum states have different quantum def
with no general relationships among them, a single par
eter is sufficient to characterize slow atomic collisions
practically all angular momenta. The same parameter
characterizes the rovibrational spectra in the threshold
gion, including states of different angular momenta. In ot
words, in addition to the relationship between the bou
spectrum and scattering, as expected from traditional Q
formulations @4#, a two-atom system has also the uniq
property that scattering of different angular momenta are
lated, and so are the bound spectra of different angular
menta.

The origin of this relationship between different angula
momentum states is not difficult to understand and is du
a combination of the following three properties of a typic
molecular system.~i! Atoms are strongly repulsive at sho
distances.~ii ! Atoms are heavy compared to electrons.~iii !
The atom-atom interaction at large distances behaves asr n

with n.2. The combination of the first two properties giv
rise to the well-known separation of tightly bound rovibr
tional states into the product of two partscvc r , in which the
vibrational wave functioncv is, to the lowest order, indepen
dent of rotational quantum numbers. For rovibrational sta
that are highly excited, the same properties ensure that
radial wave function, up to a normalization constant, rema
nearly independent of angular momentum until a distanc
reached where the rotational energy term becomes com
rable to the electronic and other energy terms. This cha
teristic is uniquely molecular and does not apply to the el
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tronic wave functions of an atom, for which the rotation
term dominates the behavior at sufficiently smallr.

The implication of the third property can be understo
from qualitative behaviors of the potential2Cn /r n1\2l ( l
11)/(2mr 2). For n.2 and lÞ0, it has a maximum and
crosses zero atr x5@ l ( l 11)#21/(n22)bn , where bn is a
length scale associated with the2Cn /r n interaction as de-
fined by

bn[~2mCn /\2!1/(n22). ~1!

From a physical point of view,r x specifies the location a
which the centrifugal potential is equal to the long-ran
interaction. For anl that is not too large,r x is of the order of
bn . Sincen is greater than 2, for distances that are sma
than r x , the long-range interaction quickly dominates, a
correspondingly, the importance of the angular moment
quickly diminishes. Mathematically speaking, this mea
that for a potential that goes to zero faster than 1/r 2 at large
distances, a pair of linearly independent solutions ex
which, at relatively small distances, are not only independ
of energy, but also independent of angular momentum.

The combination of these characteristics leads to the
lowing important conclusion. With a proper choice of lon
range solutions, a quantum-defect theory for molecular ro
brational states and slow atomic collisions can be formula
in which the short-range parameters are not only nearly
dependent of energy, but also nearly independent of the r
tive angular momentum.

For a single channel with an asymptotic van der Wa
interaction (2C6 /r 6), the proper pair of long-range solu
tions are ones with the behavior

f e l
c →

r !b6

~2/p!1/2~r /b6!r 1/2cos~y2p/4!, ~2!

ge l
c →

r !b6

2~2/p!1/2~r /b6!r 1/2sin~y2p/4!, ~3!

for both positive and negative energies. Herey
5(r /b6)22/2. This pair, which has not only energy
independent, but also angular-momentum-independent
©2001 The American Physical Society01-1
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havior at small distances, is related to thef 0 and g0 pair
defined in@1# by a linear transformation. In particular, the
are given at zero energy by

f e50l
c 5@23/2cos~pn0/2!#21r 1/2@Jn0

~y!1J2n0
~y!#, ~4!

ge50l
c 52@23/2sin~pn0/2!#21r 1/2@Jn0

~y!2J2n0
~y!#,

~5!

wheren05( l 11/2)/2.
With this choice of long-range solutions, the singl

channel quantum-defect theory is still formally the same
discussed previously@5,2,3#. In particular, the bound spec
trum of any potential with the behavior ofV(r )→2C6 /r 6 at
large distances is still given rigorously by the crossing poi
between ax function, determined by the long-range sol
tions, and a short-rangeK matrix @5,3# ~see Fig. 1!

x l
c~es!5Kc~e,l !. ~6!

Herex l
c corresponds to the choice of long-range solutions

specified by Eqs.~2! and ~3!. It is a function of a scaled
bound-state energyes defined by

es5e/@16~\2/2m!~1/b6!2#, ~7!

and is given explicitly by

x l
c5

~Ye l /Xe l !1tan~pn/2!~11M e l !/~12M e l !

12~Ye l /Xe l !tan~pn/2!~11M e l !/~12M e l !
, ~8!

in which M e l5Ge l(2n)/Ge l(n), with n, Xe l , Ye l , andGe l
being defined in@1#. Kc is a short-rangeK matrix that results
from the matching of the short-range solution and the lo
range solution. It is given explicitly by

FIG. 1. Thex l
c functions~dimensionless! for an attractive 1/r 6

interaction plotted vs (es)
1/3 ~dimensionless!. Solid line, l 50;

dashed line,l 51; dash-dotted line,l 52; dotted line,l 53. The
bound spectra of any potential withV(r )→2C6 /r 6 at large dis-
tances is given by the crossing points of thissameset of functions
with a set of system-specificKc(e,l ). For systems that satisfyb6

@r 0 , Kc(e,l ) is approximately anl-independentconstant in the
threshold region, represented by a single horizontal line.
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Kc~e,l !5S f e l
c

ge l
c D ~ f e l

c 8/ f e l
c !2~ue l8/ue l !

~ge l
c 8/ge l

c !2~ue l8/ue l !
, ~9!

evaluated at any radius beyondr 0 at which the potential has
become well represented by2C6 /r 6.

Above the threshold, the scatteringK matrix is given by a
similar expression as derived previously@5,2,3#:

Kl[tand l5~KcZgg
c 2Zf g

c !~Zf f
c 2KcZg f

c !21, ~10!

with the Zc matrix as given in@8#. The key difference be-
tween the present formulation and the previous one is
following. With the choice of long-range solution pair a
specified by Eqs.~2! and ~3!, and the property of the wave
function discussed earlier, the parameterKc is, under the
condition ofbn@r 0 @5,2,3#, not only independent of energy
but also independent of angular momentuml in the threshold
region.

The degree to whichKc is independent ofl can be esti-
mated through an effective potential method. Specifica
we can easily design a potential, of the class ofLJ(n,2n
22): V(r )52Cn /r n1C2n22 /r 2n22, for whichKc(0,l ) can
be found analytically@9#, to support the same number o
bound states and to have the sameKc for a particularl as the
system of interest. The analyticKc(0,l ) for the correspond-
ing effective potential then gives a good indication of thel
dependence ofKc for the desired system@10#. Figure 2
shows thel dependence ofKc for an Lennard-Jones~6,10!
potential with b6 /b1054.191 868 86. This ratio has bee
chosen such that the corresponding potential supports
bounds states, same as that for the triplet state of85Rb2 @11#,
and has aKc(0,l 52)50.3106, equal to the value we wi
determine later in the article from experimental data.
shows thatKc has very littlel dependence for a wide rang
of 0< l<30. This figure has been plotted on the samey scale
as that ofx l

c in Fig. 1 so that one can see clearly how insi
nificant the variations inKc are. ~The method of how to
effectively design such a potential will be discussed in mu
more detail elsewhere@9#.!

FIG. 2. Analytic results ofKc(0,l ), dimensionless and repre
sented by black diamonds, vsl for a potential V(r )52C6 /r 6

1C10/r 10 with b6 /b1054.19 186 886. The dashed horizontal lin
represents the constantKc50.3106.
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In addition to this method of effective potential, the d
gree to whichKc is independent ofl can also be determine
through a relationship between the energy independence
the l independence. They are related since they both rely
the wave function becoming a linear combination of t
right-hand sides of Eqs.~2! and~3! before the potential start
to differ substantially from2C6 /r 6. An l expansion of Eq.
~9! at zero energy shows that thel-dependent terms come i
with a relative magnitude of (l 11/2)2/@4(b6 /r 0)2#. An ex-
pansion in energy shows that the energy-dependent te
come in with a relative magnitude ofes /@2(b6 /r 0)2#. The
combination of the two leads to the following criterion. IfKc

is independent of the~scaled! energy in a region ofuDesu
around the threshold, it will be, to the same degree of ac
racy, independent ofl for all l satisfying (l 11/2)2<2uDesu.
This criterion has also a clear physical interpretatio
Namely, if Kc is independent of energy in a region ofuDeu
around the threshold, it will be independent ofl until the
rotational energy, which has an order of magnitude
8(\2/2m)(1/b6)2( l 11/2)2 around the threshold, become
comparable to or greater thanuDeu. In the example of85Rb2,
an energy independence ofKc over a range of 10 GHz~to be
determined later! translates into anl independence up tol
;30, consistent with the effective potential results shown
Fig. 1. This l independence ofKc over a large range ofl is
due both to the smallness of the rotational energy around
threshold and to the fact that the sameKc describes multiple
vibrational states near the threshold~energy independence!.

The determination of the parameterKc is, in principle,
straightforward theoretically. It can be done, for example,
solving the radial equation at a small energy~include zero
energy! and matching it to the proper long-range solutio
However, since our present knowledge about both the sh
range interaction and theCn coefficients is still not suffi-
ciently accurate for many systems, we focus here on
direct experimental determination of both theKc parameter
and theCn coefficient. In particular, we show that if theCn
coefficient that characterizes the dominant long-range in
action is known accurately, the parameterKc can be obtained
from the measurement of a single binding energy~similar to
the determination ofKl

0 discussed previously@5#!. If binding
energies of more than one state are known, in addition to
prediction of the parameterKc, an accurate determination o
Cn can also be made, especially when the two states
closely spaced in energy.

In Table I, the first column represents the experimen
results @12# for states of 85Rb2 characterized by quantum
numbersF153, F253, F56, l 52, andT58 @13,14#. The
results in the column labeled Theory II represents a sim
calculation making use of only a single experimental ener
In this calculation, the energy of the level labeledvmax2v
51 in Table I is first scaled according to Eqs.~7! and ~1!
with m577 392.368 a.u. and a value ofC654426 a.u. from
the theoretical calculation of Marinescuet al. @15#. The pa-
rameterKc is determined by evaluating thex l 52

c function at
this scaled energy@5#, which yields a value ofKc50.2841.
The crossing points of this constant withx l 52

c (es) give the
predictions of the other energy levels listed in this colum
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~see Fig. 1!. Note that this simple calculation already yield
excellent agreement with experiment and compares very
vorably with a much more complex numerical calculati
@12# listed under Theory I in Table I. This excellent agre
ment shows that the parameterKc is indeed, to a very good
approximation, a constant in the energy range covered by
experiment (;10 GHz!. This is further confirmed by the fac
that enforcingKc to be constant leads to an even bet
agreement, a procedure that also demonstrates a metho
the experimental determination of the leadingCn coefficient
from a minimum of only two binding-energy measuremen

Keeping in mind that theC6 value used in the first calcu
lation is not necessarily the trueC6, it is allowed to vary in
the following calculation. With more than one experimen
binding energy available, we varyC6 in such a way that the
two x l

c evaluated at the two different scaled energies~they
may also correspond to differentl ) are the same. In othe
words, we force the parameterKc to be a constant. The re
finedC6 is then given by the root of the following equation

x l
c~es1!2x l 8

c
~es2!50, ~11!

wherees1 andes2 are two experimental energies scaled a
cording to Eqs.~7! and ~1! for van der Waals interactions
The reduced masses are known with great precision f
atomic masses so that the only unknown on the left-h
side is theC6 coefficient. This procedure, when applied
the twod states labeled in Table Ivmax2v51 and 2, respec-
tively, leads to a revisedC654533 a.u., which is in good
agreement withC6545506100 a.u., determined by Boeste
et al. @11#. ThisC6 value refines the energy scaling and lea
to a revised value ofKc(0,l 52)50.3106. The column in
Table I labeled Theory III gives the results of energy lev
predicted using this set of revised parameters, and an e
better agreement with experiment is achieved. This pro
dure demonstrates a method for the determination of theCn
coefficient from two or more values of experimental bindi
energies. It requires no knowledge of the short-range in
actions, nor does it require numerical solutions of the Sch¨-
dinger equation. The closer in energy those two states
the better this method works.

Since the parameterKc is, to a very good approximation
independent ofl, it can be used to predict the bound spec
of other angular momenta in the threshold region~see Fig.

TABLE I. Comparison of energies, in GHz, of the last fou
bound states of85Rb2 characterized by quantum numbersF1

53,F253,F56,l 52,T58.

vmax2v Experimenta Theory I b Theory II c Theory III d

0 20.1660.03 20.15 20.1513 20.1539
1 21.5260.03 21.50 21.520 21.520
2 25.2060.03 25.16 25.222 25.200
3 212.2260.06 212.21 212.37 212.30

aFrom @12#.
bFrom @12#.
cC654426 a.u. andKc50.2841.
dC654533 a.u. andKc50.3106.
1-3
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1!. Table II gives the predictions of the bound spectra
85Rb2 characterized by quantum numbersF153,F253,F
56,l ,T5F1 l , with l 50,2,4,6, respectively@13#.

The fact thatKc is nearly a constant in the threshold r
gion, in bothe and l, has the following important implica
tions. ~i! It provides an experimental verification of th
breakdown of the large-quantum-number formulation of
correspondence principle, as a constantKc in e leads imme-
diately to the spectral characteristics discussed in@3#. ~ii !
Since 1 GHz corresponds to 47.99 mK, the fact thatKc is
independent of energy over a range of 10 GHz below
threshold implies that the same constantKc can describe
collisions over hundreds of millikelvins above the thresho
including states of different angular momenta and their as
ciated shape resonances. Figure 3 shows the partial scatt
cross sections fors, d, and g waves predicted by the sam
short-range parameterKc50.3106 for two doubly spin-
polarized 85Rb atoms. Only a small energy range is sho
here to make for easy identification of the narrowg wave
shape resonance@11#. ~iii ! Since the hyperfine splitting is

TABLE II. Bound-state energies~in GHz! of 85Rb2 with quan-
tum numbersF153,F253,F56,l ,T5F1 l with l 50,2,4,6, respec-
tively. They are predicted usingC654533 a.u. andKc50.3106.

l 50 l 52 l 54 l 56

20.2341 20.1539
21.678 21.520 21.161 20.6244
25.434 25.200 24.659 23.826
212.61 212.30 211.58 210.46
224.30 223.91 223.01 221.61
01070
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typically of the order of 1 GHz, it means that the fram
transformation method for atom-atom scattering@14,6#,
when properly formulated withKc being the short-range pa
rameter@9#, will work well in a multichannel formulation
that includes hyperfine structures@14,6,7#. ~iii ! To the extent
of Kc being e- and l-independent, potentials with the sam
Kc have, with a proper scaling of energy, the same bou
spectra and scattering properties around the threshold
cluding states of different angular momenta. This is a fou
dation for the concept of effective potential@9#.

This work was supported by NSF.

FIG. 3. Partial scattering cross sections for a pair of sp
polarized 85Rb atoms in stateF153, MF153, F253, and MF2

53. b65162.7 a.u. is determined withm577 392.368 a.u. and
C654533.
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