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We show that the highly excited rovibrational spectra of a diatomic molecule and the closely related slow
atomic collision processes contain more systematics and require less parameters to characterize than the
Rydberg spectrum of an atom. In the case of a single channel, e.g., we showitigleahort-range parameter
gives a complete description of slow collisions for practically all angular momenta, and covers an energy range
of hundreds of millikelvins. Theameparameter also describes the highly excited rovibrational spectra in the
threshold region, including states of different angular momenta. Sample applications and predictions of the
theory are presented, including comparisons with experiment.

DOI: 10.1103/PhysRevA.64.010701 PACS nuntder34.10+x, 33.20.Vq, 32.80.Pj

With recent developments such as the analytic solutionsronic wave functions of an atom, for which the rotational
of the Schrdinger equation for 1P and 1f3 potentials term dominates the behavior at sufficiently snrall
[1-3], our understanding of two-atom systems is already The implication of the third property can be understood
conceptually comparable to the quantum-defect theor§rom qualitative behaviors of the potentialC,,/r"+42I(
(QDT) of atomic Rydberg spectrfd]. Namely, the slow +1)/(2ur?). Forn>2 and|#0, it has a maximum and
atomic scattering and the rovibrational spectrum of a particucrosses zero at,=[I(1+1)]"¥""2g,, where g, is a
lar angular momentum can be understood in terms of théength scale associated with theC,,/r" interaction as de-
long-range solutions and a parameter that is a slowly varyin§ned by
function of energy in the threshold regi¢b—7,1—3. In this B
work, we show that a two-atom system possesses an even Ba=(2uCy/h?)H0=2), @
greater degree of systematics in the following sense. Unlike ) ) . . )
the QDT for atomic Rydberg spectra in which different From a physical point of viewr, specifies the location at

angular-momentum states have different quantum defecfghiCh the centrifugal potential is equal to the long-range
. ; . ; teraction. For ar that is not too largey;, is of the order of
with no general relationships among them, a single param> ; . 2 X
9 P 9 gle p Sincen is greater than 2, for distances that are smaller

eter is sufficient to characterize slow atomic collisions forfn" . X . .
. thanr,, the long-range interaction quickly dominates, and
practically all angular momenta. The same parameter alsg ; -
characterizes the rovibrational spectra in the threshold recorrespondlngly, the importance of the angular momentum
T i . P quickly diminishes. Mathematically speaking, this means
gion, including states of different angular momenta. In other,

ds. in additi h lationship b he b (%hat for a potential that goes to zero faster tharf &t large
words, in addition to the relationship between the bOUNGyigiances, a pair of linearly independent solutions exist,

spectrum and scattering, as expected from traditional QDY hich, at relatively small distances, are not only independent
formulations[4], a two-atom system has also the unique¢ energy, but also independent of angular momentum.
property that scattering of different angular momenta are re- The combination of these characteristics leads to the fol-
lated, and so are the bound spectra of different angular mQowing important conclusion. With a proper choice of long-
menta. range solutions, a quantum-defect theory for molecular rovi-
The origin of this relationship between different angular-brational states and slow atomic collisions can be formulated
momentum states is not difficult to understand and is due tin which the short-range parameters are not only nearly in-
a combination of the following three properties of a typical dependent of energy, but also nearly independent of the rela-
molecular system(i) Atoms are strongly repulsive at short tive angular momentum.
distances(ii) Atoms are heavy compared to electrofis.) For a single channel with an asymptotic van der Waals
The atom-atom interaction at large distances behaves &s 1/interaction (Cg/r®), the proper pair of long-range solu-
with n>2. The combination of the first two properties gives tions are ones with the behavior
rise to the well-known separation of tightly bound rovibra-

tional states into the product of two partsi, , in which the r<Pe

vibrational wave functiony, is, to the lowest order, indepen- f& — (2/m)"(rI Be)r**cosy — m/4), 2
dent of rotational quantum numbers. For rovibrational states

that are highly excited, the same properties ensure that the r<pes

radial wave function, up to a normalization constant, remains 95 — —(21m) Y1l Bg)r 2 sin(y — wl4), )

nearly independent of angular momentum until a distance is

reached where the rotational energy term becomes comp&r both positive and negative energies. Herng
rable to the electronic and other energy terms. This charac=(r/B¢) ~2/2. This pair, which has not only energy-
teristic is uniquely molecular and does not apply to the elecindependent, but also angular-momentum-independent be-
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FIG. 1. Thex{ functions(dimensionlessfor an attractive
interaction plotted vs &) (dimensionless Solid line, 1=0;
dashed line|=1; dash-dotted line|=2; dotted line,|=3. The
bound spectra of any potential wiM(r)— —Cg/r® at large dis-
tances is given by the crossing points of th@meset of functions
with a set of system-specifi€®(e,l). For systems that satisfgg
>ro, K°(e,l) is approximately an-independentconstant in the
threshold region, represented by a single horizontal line.

havior at small distances, is related to tifeand g° pair
defined in[1] by a linear transformation. In particular, they
are given at zero energy by

c —

a=[2%cod mre/2)] I, (V) +I-, (Y], @

g(e:=0| [23/25in(WVO/Z)]ilrllz[Jyo(Y)_nyo(y)]y

5
wherevy=(l +1/2)/2.

trum of any potential with the behavior ®(r)— — C¢/r® at
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FIG. 2. Analytic results ofK°(0/), dimensionless and repre-
sented by black diamonds, Jsfor a potential V(r)=—Cg/r®
+Cyo/r® with B¢/ B10=4.19 186 886. The dashed horizontal line
represents the constakif=0.3106.
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, 9
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evaluated at any radius beyonglat which the potential has
become well represented byCq/r®.

Above the threshold, the scatteridgmatrix is given by a
similar expression as derived previou$;2,3:

K =tans = (K°Zg,— Z¢,)(Zf—K°Zgp) ~H,

(10

with the Z° matrix as given in8]. The key difference be-
tween the present formulation and the previous one is the
following. With the choice of long-range solution pair as
specified by Eqs(2) and (3), and the property of the wave
With this choice of long-range solutions, the single- function discussed earlier, the parameker is, under the
channel quantum-defect theory is still formally the same agondition of 3,>r, [5,2,3], not only independent of energy,
discussed previousli5,2,3. In particular, the bound spec- but also independent of angular momentuim the threshold

region.

large distances is still given rigorously by the crossing points The degree to whick® is independent of can be esti-

between ay function, determined by the long-range solu- mated through an effective potential method. Specifically,
we can easily design a potential, of the classLd{n,2n

—2):V(r)=—C,/r"+ Cy,_,/r?""2 for whichK¢(0J) can

be found analytically{9], to support the same number of
bound states and to have the salfefor a particulad as the
Here x{ corresponds to the choice of long-range solutions asystem of interest. The analytic°(0,l) for the correspond-
ing effective potential then gives a good indication of the
dependence oK® for the desired systeml0]. Figure 2
shows thel dependence oK® for an Lennard-Jone€s,10
potential with Bg/B,0=4.19186886. This ratio has been
chosen such that the corresponding potential supports 38
bounds states, same as that for the triplet staté¥#th, [11],

and has &K°(0l=2)=0.3106, equal to the value we will
determine later in the article from experimental data. It
shows thatk® has very littlel dependence for a wide range
of 0=I=30. This figure has been plotted on the sgnseale

as that ofy{ in Fig. 1 so that one can see clearly how insig-
nificant the variations irK® are. (The method of how to
from the matching of the short-range solution and the longeffectively design such a potential will be discussed in much
more detail elsewherd].)
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tions, and a short-range matrix [5,3] (see Fig. 1

Xi(es) =K (el). (6)

specified by Eqgs(2) and (3). It is a function of a scaled
bound-state energy, defined by

es= €l[16(1i%/211) (1Bg)?], ()
and is given explicitly by
c (Yel/Xel)+tar(7TV/2)(1+Mel)/(l_Mel)
X1 (8

1-(YalXtan(mvi2)(1+ M)/ (1-Mg)’

in whichM =G ,(—»)/G4(v), with v, X, Y4, andGy
being defined if1]. K¢ is a short-rang& matrix that results

range solution. It is given explicitly by
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In addition to this method of effective potential, the de- TABLE I. Comparison of energies, in GHz, of the last four
gree to whichK® is independent of can also be determined bound states of**Rb, characterized by quantum numbefy
through a relationship between the energy independence ant3F2=3F=6/=2T=8.
thel independence. They are related since they both rely on
the wave function becoming a linear combination of the’ma<” Y

Experimenf  Theory I® Theory 16 Theory 111 @

right-hand sides of Eq$2) and(3) before the potential starts o —0.16+0.03 -0.15 —0.1513 —0.1539
to differ substantially from—Cg/r®. An | expansion of Eq. 1 —1.52+0.03 —1.50 —1.520 —1.520
(9) at zero energy shows that thelependent terms come in 2 —-5.20-0.03 —5.16 —5.222 —5.200
with a relative magnitude ofl ¢ 1/2)?/[4(Be/r0)?]. An ex- 3 —12.22+0.06 —12.21 —12.37 —-12.30

pansion in energy shows that the energy-dependent term
come in with a relative magnitude @f/[2(Bs/ro)?]. The :From [12]

combination of the two leads to the following criterionKif Cgrcinlalzzé' K°—0.2841
is independent of théscaled energy in a region ofAe| dcﬁ:4533 a.u. and(°:0.3106.
around the threshold, it will be, to the same degree of accu-"¢ au. an®=o. '
racy, independent dffor all | satisfying (+1/2)°<2|Aed|. (e Fig. 1 Note that this simple calculation already yields
This crltgrlocn_ has also a clear physical interpretation.qycejlent agreement with experiment and compares very fa-
Namely, if K® is independent of energy in a region [de| o aply with a much more complex numerical calculation
around the threshold, it will be independent lotintil the t[lz] listed under Theory | in Table I. This excellent agree-
rota;[ional energy, Whiczh has an order of magnitude Ofhent shows that the parametéf is indeed, to a very good
8(f°1211)(1/Be) (1 +1/2)" around the threshold, béacomes approximation, a constant in the energy range covered by the
comparable to or greater thalie|. In the example of*Rby, experiment 10 GH2. This is further confirmed by the fact

an energy independence Kf over a range of 10 GH#o be  {hat enforcingk® to be constant leads to an even better
determined latgrtranslates into a independence up to  5greement, a procedure that also demonstrates a method for
~ 30, consistent with the effective potential results shown iny,q experimental determination of the leadi@ig coefficient

Fig. 1. Thisl independence ok® over a large range dfis  from a minimum of only two binding-energy measurements.
due both to the smaliness of the rotational energy around the Keeping in mind that th€; value used in the first calcu-

threshold and to the fact that the sam%des_cribes multiple  |ation is not necessarily the tru@,, it is allowed to vary in
vibrational states near the thresheé&hergy independenke  ihe following calculation. With more than one experimental

The determination of the parametsf is, in principle,  hinding energy available, we vafy in such a way that the
straightforward theoretically. It can be done, for example, by,

, , | . two x evaluated at the two different scaled enerdibey
solving the radial equation at a small energyclude zero may also correspond to differehf are the same. In other
energy and_ matching it to the proper long-range SOIUtion'words, we force the parameti to be a constant. The re-
Howev_er, since our present knovv]gdge a.bout_ both the S.horh'ned Cs is then given by the root of the following equation:
range interaction and th€, coefficients is still not suffi-
ciently accurate for many systems, we focus here on the YS(ee) — x5 () =0 (11)
direct experimental determination of both tKé parameter 1Tt I "2 '

and theC,, coefficient. In particular, we show that if th&,  \yheree, and e, are two experimental energies scaled ac-
coefficient that characterizes the dominant long-range 'nterCording to Egs.(7) and (1) for van der Waals interactions.

action is known accurately, the parametércan be obtained The reduced masses are known with great precision from
from the measurement of a single binding enefgnilar to  4tomic masses so that the only unknown on the left-hand

the determination oK} discussed previousig)). If binding side is theC, coefficient. This procedure, when applied to
energies of more than one state are known, in addition to thghe twod states labeled in Tablevl,,,—v =1 and 2, respec-

prediction of the parameté(®, an accurate determination of tjvely, leads to a revise€s=4533 a.u., which is in good

Cn can also be made, especially when the two states arggreement withtCq=4550* 100 a.u., determined by Boesten
closely spaced in energy. et al.[11]. This C¢ value refines the energy scaling and leads
In Table I, the first column represents the experimentaty 3 revised value oK¢(0l=2)=0.3106. The column in
results[12] for states of ®*Rb, characterized by quantum Taple | labeled Theory Iil gives the results of energy levels
numbersk,=3, F,=3, F=6,1=2,andT=8[13,14. The  predicted using this set of revised parameters, and an even
results in the column labeled Theory Il represents a simpl@etter agreement with experiment is achieved. This proce-

calculation making use of only a single experimental energygure demonstrates a method for the determination ofthe

In this calculation, the energy of the level labelega,—v  coefficient from two or more values of experimental binding
=1 in Table | is first scaled according to Eq3) and (1)  energies. It requires no knowledge of the short-range inter-
with ©=77392.368 a.u. and a value 6§=4426 a.u. from  actions, nor does it require numerical solutions of the $chro
the theoretical calculation of Marineset al. [15]. The pa-  dinger equation. The closer in energy those two states are,
rameterK® is determined by evaluating thg_, function at  the better this method works.

this scaled energj5s], which yields a value 0K°®=0.2841. Since the parameté(® is, to a very good approximation,
The crossing points of this constant witfi_,(es) give the independent of, it can be used to predict the bound spectra
predictions of the other energy levels listed in this columnof other angular momenta in the threshold regieae Fig.
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TABLE II. Bound-state energieén GHz) of ®Rb, with quan-
tum number$-,=3F,=3F=6,,T=F+I with 1=0,2,4,6, respec-
tively. They are predicted usinGg=4533 a.u. an&®=0.3106.

=0 =2 =4 =6
—0.2341 —0.1539

—1.678 —1.520 —1.161 —0.6244
—5.434 —5.200 —4.659 —3.826
—12.61 —12.30 —11.58 —10.46
—24.30 —23.91 —23.01 —21.61

1). Table Il gives the predictions of the bound spectra of

8Rb, characterized by quantum numbefs=3F,=3F
=6, T=F+I, with 1=0,2,4,6, respectivelj13].

The fact thatk® is nearly a constant in the threshold re-
gion, in bothe andl, has the following important implica-
tions. (i) It provides an experimental verification of the
breakdown of the large-quantum-number formulation of th

correspondence principle, as a constéhtin € leads imme-
diately to the spectral characteristics discussed3ih (ii)
Since 1 GHz corresponds to 47.99 mK, the fact tkatis

independent of energy over a range of 10 GHz below th

threshold implies that the same consta¢ft can describe

collisions over hundreds of millikelvins above the threshold,
including states of different angular momenta and their assq c
ciated shape resonances. Figure 3 shows the partial scatterin
cross sections fos, d, andg waves predicted by the same

short-range parametelK®=0.3106 for two doubly spin-

polarized ®Rb atoms. Only a small energy range is shown

here to make for easy identification of the narrgwvave

shape resonandell]. (iii) Since the hyperfine splitting is

e
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FIG. 3. Partial scattering cross sections for a pair of spin-
polarized ®Rb atoms in staté;=3, Mg;=3, F,=3, andMg,
=3. Be=162.7 a.u. is determined withh=77 392.368 a.u. and

Cs=4533.

typically of the order of 1 GHz, it means that the frame-
transformation method for atom-atom scatterift4,6),
when properly formulated witk® being the short-range pa-
fameter[9], will work well in a multichannel formulation
that includes hyperfine structurgb4,6,7. (i) To the extent

of K® being e- andl-independent, potentials with the same
have, with a proper scaling of energy, the same bound
sgectra and scattering properties around the threshold, in-
cluding states of different angular momenta. This is a foun-
dation for the concept of effective potent[&].
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