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Breakdown of Bohr’s Correspondence Principle
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Bohr’s correspondence principle, i.e., the expectation that the semiclassical approximation works
better for states with greater quantum numbers, is shown to break down in all quantum systems in
which the asymptotic interaction between the fragments behaves as2Cn�rn with n . 2.

PACS numbers: 03.65.–w, 31.15.Gy, 33.20.Tp
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From the early days of quantum mechanics, it h
long been expected that the greater the quantum num
for a certain degree of freedom (corresponding to
greater number of nodes in the corresponding wa
function), the better the semiclassical approximation [
This expectation, which is often referred to as Bohr
correspondence principle, has persisted despite a lac
rigorous proof for an arbitrary potential. It works we
in Coulombic systems and has been assumed to b
general principle partly because for systems in whi
the asymptotic interaction is of the form of1�rn with
n . 2, the only systematic understanding of the highly
excited bound spectra has been based on a semiclas
consideration [2] and there has been no correspond
quantum theory to compare with [3].

Stimulated by advances in cold-atom collisions, esp
cially the development of photoassociative spectrosco
(see, e.g., [4–14]), considerable progress has been m
in the understanding of the excited spectra of systems
which the asymptotic interaction is not Coulombic [4
21]. In particular, analytic solutions of the Schröding
equation for1�r6 and1�r3 potentials have been obtaine
[18–21]. By comparing the fully quantum result base
upon these solutions with the corresponding semiclas
cal predication and also by examining the criterion for t
applicability of the semiclassical approximation, we sho
the expectation that semiclassical results work better
more highly excited states is not applicable to systems
which the asymptotic potential is of the form of2Cn�rn

with n . 2. In fact, we will show for such systems tha
the opposite is true, i.e., the semiclassical approximat
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fails for the most highly excited states which are close
to the threshold, but can work better and better for lowe
lying states which are less excited.

Consider a quantum system described by the rad
Schrödinger equation∑

2
h̄2

2m

d2

dr2 1
h̄2l�l 1 1�

2mr2 1 V �r� 2 e

∏
ul�r� � 0 ,

(1)

in which the potentialV �r� has an asymptotic behavio
characterized by

V �r� r!`
! 2Cn�rn. (2)

If the exponentn is greater than 2, there are only a finit
number of bound states. Depending on the value ofCn

and m, this number can, however, be arbitrarily larg
Specifically, if the length scale defined by

bn � �2mCn�h̄2�1��n22� (3)

is much greater than other length scales present in the
tem, the corresponding quantum system has a large num
of bound states. This condition can be conveniently su
marized as

bn ¿ r0 , (4)

wherer0 is roughly the longest of the other length scale
in the system [22]. Since we are interested here o
in the limit of a large quantum number and also for th
purpose of comparing with the semiclassical results [
the condition Eq. (4) will generally be assumed [23].
is however worth noting that the limit specified by Eq. (4
is not only of purely theoretical interest. It is satisfied
© 1999 The American Physical Society 4225
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many real quantum systems as well, especially systems
with an asymptotic 2C3�r3 potential that is due to the
resonant electric dipole-dipole interaction.

To be specific, consider first the case of n � 3 and
l � 0. Under the condition of Eq. (4), the semiclassical
result [2] for the highly excited states can be written as

�2es�y��1�6 �
�G�1�3��3

25�331�2p
�ymax 2 y 1 mD� , (5)

where es is a scaled bound-state energy defined by

es �
1
4

e

�h̄2�2m� �1�b3�2 . (6)

y is a (vibration) quantum number, ymax is the quantum
number corresponding to the most highly excited bound
state, and mD is a constant that depends on interactions
having shorter range. This equation is similar in spirit to
the Rydberg formula for Coulombic systems. It has been
used, for example, to extract the C3 coefficient from a
photoassociative spectrum [5,7,13].

The key implication of this semiclassical result is that
the spacing �2es�y 2 1��1�6 2 �2es�y��1�6 is a universal
constant (� 1.11291267 . . .) that is the same for all sys-
tems with an asymptotic 2C3�r3 interaction [provided that
the condition Eq. (4) is satisfied]. It is independent of both
C3 and m, which scale only the energy, independent of the
quantum number y, and is furthermore independent of the
short-range part of the potential, which comes into play
only through the constant mD . And according to the cor-
respondence principle, one would expect this conclusion
to work better and better for greater quantum numbers y

[2], an assertion which we show to be incorrect.
Quantum mechanically, the bound spectrum of a system

described by Eqs. (1) and (2) with n � 3 can be formu-
lated rigorously as the crossing points between a universal
function of the scaled energy es [defined by Eq. (6)] and
a function of energy which depends only on interactions
having shorter range [21]. Specifically, it is given by the
solutions of

xl�es� � K0
l �e� . (7)

Here K0
l is a short-range K matrix that is related to the

logarithmic derivative of the wave function as in [20]. xl

is a function of es determined by the analytic solutions of
the Schrödinger equation for an attractive 1�r3 interaction
[21]. Specifically,

xl�es� � tanp�n 2 n0�
1 2 Mel

1 1 Mel
, (8)

in which n and Mel are the same as those defined for the
repulsive 1�r3 potential [20] [the derivation of Eqs. (7)
and (8) and a complete discussion of the attractive 1�r3

solutions are presented elsewhere [21], but the methodol-
ogy can already be found in [18–20] ]. The function xl

for a specific l is universal in the sense that it is the same
for all quantum systems with V �r� ! 2C3�r3. Differ-
ent systems differ from each other only in the scaling of
4226
energy, determined by C3 and m, and in K0
l �e�, which is

determined by interactions having shorter range. A plot
of xl�0 versus 2�2es�1�6 is shown in Fig. 1. The s wave
bound spectrum of any potential with V �r� ! 2C3�r3 at
large distances is given by the crossing points of this func-
tion with a system specific K0

l �e�. Also plotted, as an ex-
ample, are the vibration energy levels for both the 02

g and
the 1u electronic states of 23Na2 computed numerically by
Stwalley et al. [15]. These two electronic states have dif-
ferent values of C3, but their vibration energy levels can
be plotted on the same diagram with a proper scaling.

This quantum result is completely general and is applica-
ble even when the condition Eq. (4) is violated. The only
difference is that K0

l would then have more significant en-
ergy dependence. For our purposes here, we are interested
only in the limit of large quantum numbers under the condi-
tion of Eq. (4). In this case, the quantum spectrum for the
highly excited states simplifies to the crossing points of xl

with K0
l � constant [19]. This result, which is exact in the

limit of bn�r0 ! ` (implying ymax ! `), is simply due
to the fact that, near the threshold, the dominant long-range
interaction induces an energy dependence on the scale of
�h̄2�2m� �1�bn�2, while the energy dependence induced by
interactions having a shorter range occurs only over a much
greater scale characterized by �h̄2�2m� �1�r0�2. The vibra-
tional energy levels plotted in Fig. 1 for the 02

g and the
1u electronic states of 23Na2 [15] are good illustrations of
this point. They show that xl�es� evaluated at the highly
excited bound-state energies [� K0

l �e� at these energies]

FIG. 1. Solid line: the xl function for an attractive 1�r3

interaction with l � 0, plotted vs 2�2es�1�6. The s wave
bound spectrum of any potential with V �r� ! 2C3�r3 at large
distances is given by the crossing points of this function with
a short-range parameter K0

l �e�. For systems that satisfy b3 ¿

r0, K0
l �e� is approximately a constant in the threshold region.

The crosses and the stars represent the vibrational energy levels
for the 02

g and the 1u electronic states of 23Na2, respectively.
They are obtained from a quantum numerical calculation in
[15]. The dotted lines represent constant extrapolations of
K0

l�0, from which the energies of the higher bound states can
be obtained.
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have indeed very little energy dependence. This is in spite
of the fact that the 1u electronic state supports only 14 vi-
brational levels, which is not a “ large” number.

Table I lists the quantum results of the spacing �2es 3

�y 2 1��1�6 2 �2es�y��1�6 calculated from the crossing
points of xl�0 with three constant values of K0

l�0. It
shows clearly the breakdown of the semiclassical approxi-
mation close to the threshold. Specifically, the spacing
depends on the quantum number y. It is also different for
different values of K0

l�0, implying a dependence on in-
teractions having shorter range. It is also clear from this
comparison that the semiclassical approximation does get
better for the less excited states away from the threshold
where the dependences of the spacing on both the quan-
tum number y and on the parameter K0

l�0 become less
and less significant.

The differences between the quantum and the semi-
classical predictions of the spacing �2es�y 2 1��1�6 2

�2es�y��1�6 translate, of course, into different predictions
for binding energies. In the example of the 02

g state of
23Na2, the last three bound-state energies were not com-
puted quantum mechanically [15]. They were obtained
from an extrapolation based on the semiclassical approxi-
mation [2]. Table II compares the results of this extrapo-
lation with that of a quantum extrapolation (see Fig. 1),
and significant differences can be seen especially for the
least bound state [24]. This difference becomes even more
obvious for the 1u electronic state [15]. The semiclas-
sical extrapolation predicts in this case two more bound

TABLE I. Quantum results for �2es�y 2 1��1�6 2 �2es�y��1�6

for the s wave bound spectra of systems with n � 3 and
b3 ¿ r0. Smaller values of ymax 2 y correspond to more
highly excited states.

ymax 2 y K0
l�0 � 0.2 K0

l�0 � 0.5 K0
l�0 � 2.0

0 1.319051 1.255099 1.193940
1 1.140453 1.138031 1.133384
2 1.124471 1.123821 1.122464
3 1.119314 1.119046 1.118466
4 1.116986 1.116851 1.116549
5 1.115735 1.115657 1.115480
6 1.114985 1.114935 1.114823
7 1.114499 1.114466 1.114390
8 1.114166 1.114143 1.114089
9 1.113928 1.113911 1.113872

10 1.113752 1.113739 1.113709
11 1.113618 1.113608 1.113585
12 1.113514 1.113506 1.113488
13 1.113431 1.113425 1.113410
14 1.113364 1.113359 1.113348
15 1.113310 1.113306 1.113296
16 1.113265 1.113261 1.113253
17 1.113227 1.113224 1.113217
18 1.113194 1.113192 1.113186

...
...

...

Semiclassical 1.112913 1.112913 1.112913
states with binding energies of 3.8739 3 1028 cm21 and
1.2735 3 10212 cm21, respectively, while the quantum
extrapolation (see Fig. 1) predicts only one more bound
state with a binding energy of 3.2367 3 1028 cm21 [24].

The breakdown of the semiclassical approximation near
the threshold for n . 2 is not entirely surprising. The fact
that one had to use a combination of semiclassical and
quantum theory to obtain the scattering length [25] was an
indication that a pure semiclassical theory might fail for
the most highly excited bound states. This failure is also
consistent with the standard criterion for the applicability
of the semiclassical approximation [25,26]Ç

d
dr

1
k�r�

Ç
ø 1, (9)

where k�r� � ��2m�h̄2� �e 2 V �r���1�2. For a 2Cn�rn

potential, the classical outer turning point at energy e is at

rt � �kbn�22�nbn , (10)

where k is related to energy by e � 2�h̄2�2m�k2. At the
same time, Eq. (9) leads to the requirement

�r�bn��n22��2 ø 1 , (11)

which translates into r ø bn for n . 2. Comparison
of this criterion with Eq. (10) indicates that as the en-
ergy approaches the threshold, there is an increasingly ex-
panded part of the classically allowed region in which the
semiclassical condition is violated. One can thus expect
the breakdown of the semiclassical approximation near
the threshold to be a general characteristic of all long-
range interactions of the type of 2Cn�rn with n . 2.
In particular, the semiclassical quantization results of
LeRoy and Bernstein [2] are expected to fail for the last
few bound states with binding energies that are not much
greater than �h̄2�2m� �1�bn�2.

This conclusion is also verified for potentials with an
attractive 1�r6 asymptotic behavior [18,19]. Under the
condition of Eq. (4), a semiclassical approximation for the
highly excited s states leads to [2]

�2es�y��1�3 �
�G�1�3��3

25�3p
�ymax 2 y 1 mD� , (12)

where es is a scaled bound-state energy defined by

es �
1
16

e

�h̄2�2m� �1�b6�2 . (13)

TABLE II. Comparison of the binding energies 2e for the
last three bound states of 23Na2 in the 02

g state, predicted by
a semiclassical extrapolation and by a quantum extrapolation,
respectively.

y Semiclassical a (cm21) Quantumb (cm21)

39 4.1916 3 10211 0.92524 3 10211

38 1.1215 3 1028 1.0065 3 1028

37 1.9247 3 1027 1.8908 3 1027

aFrom [15]; bsee Fig. 1.
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FIG. 2. The xl�es� function for the attractive 1�r6 interaction
with l � 0 [18] plotted vs �es�1�3. For systems satisfying
b6 ¿ r0, the highly excited s wave bound spectrum is given
by the cross points of this function with a constant repre-
senting K0

l�0.

Equation (12) asserts that the spacing �2es�y 2 1��1�3 2

�2es�y��1�3 is a universal constant (� 1.92762 . . .) that
is independent of C6 and m, independent of y, and inde-
pendent of the short-range part of the potential. Quantum
mechanically, the corresponding spectrum is given by the
crossing points between a universal xl function derived
from the attractive 1�r6 solutions [18,19] and a constant.
Figure 2 shows this xl�0 function plotted versus �es�1�3.
A comparison between quantum and semiclassical pre-
dictions of the spacing �2es�y 2 1��1�3 2 �2es�y��1�3 is
presented in Table III. It again shows the breakdown of
semiclassical predictions close to the threshold.

In conclusion, we have shown that Bohr’ s correspon-
dence principle, which originated and worked well for
Coulombic systems, does not apply to systems in which
the asymptotic interaction is of the form of 2Cn�rn with
n . 2. In such systems, the semiclassical approximation
fails near the threshold but can work better away from
it until eventually interactions having shorter range come
into play.
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reading of the manuscript. This work is supported in

TABLE III. Quantum results for �2es�y 2 1��1�3 2
�2es�y��1�3 for the s wave bound spectra of systems with
n � 6 and b6 ¿ r0. Smaller values of ymax 2 y correspond
to more highly excited states.

ymax 2 y K0
l � 20.2 K0

l � 20.5 K0
l � 22.0

0 2.03581 1.99746 1.96296
1 1.93747 1.93648 1.93464
2 1.93131 1.93108 1.93061
3 1.92955 1.92947 1.92928

...
...

...

Semiclassical 1.92762 1.92762 1.92762
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