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Breakdown of Bohr’s Correspondence Principle
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Bohr’s correspondence principle, i.e., the expectation that the semiclassical approximation works
better for states with greater quantum numbers, is shown to break down in all quantum systems in
which the asymptotic interaction between the fragments behave<agr" with n > 2.
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From the early days of quantum mechanics, it hadails for the most highly excited states which are closest
long been expected that the greater the quantum numbtg the threshold, but can work better and better for lower-
for a certain degree of freedom (corresponding to dying states which are less excited.
greater number of nodes in the corresponding wave Consider a quantum system described by the radial
function), the better the semiclassical approximation [1].Schrdodinger equation
This expectation, which is often referred to as Bohr's 2 42 R2(1 + 1)
correspondence principle, has persisted despite a lack of[—z— St ——F TtV - Ei|ul(r) =0,

! ! . M dr 2ur

rigorous proof for an arbitrary potential. It works well 1)

in Coulombic systems and has been assumed to be a ) ) ]
general principle partly because for systems in whicHn Which the potentialV’(r) has an asymptotic behavior
the asymptotic interaction is of the form af/" with ~ Characterized by

n > 2, the only systematic understanding of the highly vir) =5 —c,/r". (2)
excited bound spectra has been based on a semiclassi

consideration [2] and there has been no correspondingumber of bound states. Depending on the value of

quantum theory to compare with [3]. X oo
Stimulated by advances in cold-atom collisions, espeEijI p, this number can, however, be arbitrarily large.

. o Specifically, if the length scale defined by
cially the development of photoassociative spectroscopy
(see, e.g., [4—14]), considerable progress has been made Bn = 2uC,/RHV "2 3)

in the understanding of the excited spectra of systems i mych greater than other length scales present in the sys-
which the asymptotic interaction is not Coulombic [4—tem, the corresponding quantum system has a large number

21]. In particular, analytic solutions of the Schrddingerof hound states. This condition can be conveniently sum-
equation forl/r¢ and1/r* potentials have been obtained marized as

[18—21]. By comparing the fully quantum result based

upon these solutions with the corresponding semiclassi- Bn >0, (4)

cal predication and also by examining the criterion for thewherer, is roughly the longest of the other length scales
applicability of the semiclassical approximation, we showin the system [22]. Since we are interested here only
the expectation that semiclassical results work better foin the limit of a large quantum number and also for the
more highly excited states is not applicable to systems ipurpose of comparing with the semiclassical results [2],
which the asymptotic potential is of the form efC,/r"  the condition Eq. (4) will generally be assumed [23]. It

with n > 2. In fact, we will show for such systems that is however worth noting that the limit specified by Eq. (4)

the opposite is true, i.e., the semiclassical approximatiors not only of purely theoretical interest. It is satisfied in

ﬁa%he exponent: is greater than 2, there are only a finite
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many real quantum systems as well, especialy systems
with an asymptotic —C3/r* potential that is due to the
resonant electric dipole-dipole interaction.

To be specific, consider first the case of n = 3 and
[ = 0. Under the condition of Eq. (4), the semiclassical
result [2] for the highly excited states can be written as

3
e = LU v ), @

where €, is a scaled bound-state energy defined by
e
4 (R*/2p) (1/B3)*”

v is a (vibration) quantum number, v.x is the quantum
number corresponding to the most highly excited bound
state, and wp is a constant that depends on interactions
having shorter range. This equation is similar in spirit to
the Rydberg formula for Coulombic systems. It has been
used, for example, to extract the C; coefficient from a
photoassociative spectrum [5,7,13].

The key implication of this semiclassical result is that
the spacing [—e,(v — 1)]"/® — [—€,(v)]"/® isauniversal
constant (= 1.11291267...) that is the same for all sys-
temswith an asymptotic —C3/r? interaction [provided that
the condition Eq. (4) issatisfied]. Itisindependent of both
C3 and w, which scale only the energy, independent of the
gquantum number v, and is furthermore independent of the
short-range part of the potential, which comes into play
only through the constant wp. And according to the cor-
respondence principle, one would expect this conclusion
to work better and better for greater quantum numbers v
[2], an assertion which we show to be incorrect.

Quantum mechanically, the bound spectrum of a system
described by Egs. (1) and (2) with n = 3 can be formu-
lated rigoroudly as the crossing points between a universal
function of the scaled energy e, [defined by Eqg. (6)] and
a function of energy which depends only on interactions
having shorter range [21]. Specifically, it is given by the
solutions of

(6)

€ =

xi(e) = K(e) . (7)

Here K is a short-range K matrix that is related to the
logarithmic derivative of the wave function asin [20]. x;
isafunction of e; determined by the analytic solutions of
the Schrodinger equation for an attractive 1/r3 interaction
[21]. Specificaly,

1 — My )
1+ M,

in which » and M., are the same as those defined for the
repulsive 1/r° potential [20] [the derivation of Egs. (7)
and (8) and a complete discussion of the attractive 1/r3
solutions are presented elsewhere [21], but the methodol-
ogy can aready be found in [18-20]]. The function y;
for a specific [ is universal in the sense that it is the same
for al quantum systems with V(r) — —Cs/r®. Differ-
ent systems differ from each other only in the scaling of

4226

xi(e;) = tanm (v — vo)

energy, determined by C; and u, and in K} (€), which is
determined by interactions having shorter range. A plot
of xi—o versus —(—e;)'/® isshownin Fig. 1. Thes wave
bound spectrum of any potential with V(r) — —C3/r? at
large distancesis given by the crossing points of thisfunc-
tion with a system specific K7 (e). Also plotted, as an ex-
ample, are the vibration energy levels for both the 0, and
the 1, electronic states of 2?Na, computed numerically by
Stwalley et al. [15]. These two electronic states have dif-
ferent values of C3, but their vibration energy levels can
be plotted on the same diagram with a proper scaling.
Thisquantum result iscompletely general and isapplica-
ble even when the condition Eq. (4) isviolated. The only
differenceisthat K} would then have more significant en-
ergy dependence. For our purposes here, we are interested
only inthelimit of large quantum numbers under the condi-
tion of Eq. (4). Inthiscase, the quantum spectrum for the
highly excited states simplifies to the crossing points of y;
with K = constant [19]. Thisresult, whichisexactinthe
limit of B,,/ro — c° (implying vm.x — ©), is simply due
to the fact that, near the threshold, the dominant long-range
interaction induces an energy dependence on the scale of
(h?/2u,) (1/B,)?*, whilethe energy dependence induced by
interactions having ashorter range occurs only over amuch
greater scale characterized by (/%2/2u) (1/r9)%>. Thevibra-
tional energy levels plotted in Fig. 1 for the 0, and the
1,, electronic states of 2*Na, [15] are good illustrations of
this point. They show that y;(e;) evaluated at the highly
excited bound-state energies [= K!(€) at these energies]

8 4
1/6
—(-¢,)

FIG. 1. Solid line: the y; function for an attractive 1/r3
interaction with [ = 0, plotted vs —(—¢,)"/%. The s wave
bound spectrum of any potential with V(r) — —C3/r® at large
distances is given by the crossing points of this function with
a short-range parameter K} (). For systems that satisfy 85 >
ro, K{(€) is approximately a constant in the threshold region.
The crosses and the stars represent the vibrational energy levels
for the 0, and the 1, electronic states of *’Na,, respectively.
They are obtained from a quantum numerical calculation in
[15]. The dotted lines represent constant extrapolations of
K-, from which the energies of the higher bound states can
be obtained.
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have indeed very little energy dependence. Thisisin spite
of the fact that the 1, electronic state supports only 14 vi-
brational levels, which is not a*“large” number.

Table | lists the quantum results of the spacing [ — €, X
(v — 1]V — [—€,(v)]"/° calculated from the crossing
points of y,—o with three constant values of K. It
shows clearly the breakdown of the semiclassical approxi-
mation close to the threshold. Specifically, the spacing
depends on the quantum number v. It isalso different for
different values of K-, implying a dependence on in-
teractions having shorter range. It is also clear from this
comparison that the semiclassical approximation does get
better for the less excited states away from the threshold
where the dependences of the spacing on both the quan-
tum number v and on the parameter K\, become less
and less significant.

The differences between the quantum and the semi-
classical predictions of the spacing [—e,(v — 1)]'/¢ —
[—e,(v)]"/® trandate, of course, into different predictions
for binding energies. In the example of the 0, state of
2Nap, the last three bound-state energies were not com-
puted quantum mechanically [15]. They were obtained
from an extrapolation based on the semiclassical approxi-
mation [2]. Table Il compares the results of this extrapo-
lation with that of a quantum extrapolation (see Fig. 1),
and significant differences can be seen especially for the
least bound state[24]. This difference becomes even more
obvious for the 1, eectronic state [15]. The semiclas-
sical extrapolation predicts in this case two more bound

TABLE |. Quantum resultsfor [—e,(v — 1)]"/® — [—¢,(v)]"/®
for the s wave bound spectra of systems with » = 3 and

B3 > ro. Smaller values of v,.x — v correspond to more
highly excited states.
Vmax — U Klo =02 K y=05 Kio=20

0 1.319051 1.255099 1.193940
1 1.140453 1.138031 1.133384
2 1.124471 1.123821 1.122464
3 1.119314 1.119046 1.118466
4 1.116986 1.116851 1.116549
5 1.115735 1.115657 1.115480
6 1.114985 1.114935 1.114823
7 1.114499 1.114466 1.114390
8 1.114166 1.114143 1.114089
9 1.113928 1.113911 1.113872
10 1.113752 1.113739 1.113709
11 1.113618 1.113608 1.113585
12 1.113514 1.113506 1.113488
13 1.113431 1.113425 1.113410
14 1.113364 1.113359 1.113348
15 1.113310 1.113306 1.113296
16 1.113265 1.113261 1.113253
17 1.113227 1.113224 1.113217
18 1.113194 1.113192 1.113186

Semiclassical 1.112913 1.112913 1.112913

states with binding energies of 3.8739 X 1078 cm™! and
1.2735 X 107!2 cm™!, respectively, while the quantum
extrapolation (see Fig. 1) predicts only one more bound
state with a binding energy of 3.2367 X 1078 cm™! [24].

The breakdown of the semiclassical approximation near
the threshold for n > 2 isnot entirely surprising. The fact
that one had to use a combination of semiclassical and
guantum theory to obtain the scattering length [25] was an
indication that a pure semiclassical theory might fail for
the most highly excited bound states. This failure is also
consistent with the standard criterion for the applicability
of the semiclassical approximation [25,26]

CS
dr k(r)

where k(r) = {2u/FY)[e — V(r)]}'/2. For a —C,/r"
potential, the classical outer turning point at energy e isat

re = (kBy)"Y" By, (10)

where k isrelated to energy by e = —(/i%/2u)k>. Atthe
same time, EQ. (9) leads to the requirement

(r/B)" P < 1, (11)

which trandates into r < B, for n > 2. Comparison
of this criterion with Eq. (10) indicates that as the en-
ergy approaches the threshold, there is an increasingly ex-
panded part of the classically allowed region in which the
semiclassical condition is violated. One can thus expect
the breakdown of the semiclassical approximation near
the threshold to be a general characteristic of all long-
range interactions of the type of —C,/r" with n > 2.
In particular, the semiclassical quantization results of
LeRoy and Bernstein [2] are expected to fail for the last
few bound states with binding energies that are not much
greater than (72/2u) (1/B4)*.

This conclusion is aso verified for potentials with an
attractive 1/r® asymptotic behavior [18,19]. Under the
condition of Eq. (4), asemiclassica approximation for the
highly excited s states leadsto [2]

[—e,(v)]'/? = [Ld/3F

251377

where €, is a scaled bound-state energy defined by

< 1, (9

(Umax —v+ Iu'D)s (12)

1 €

=16 (2/2) (1/BoP (13

€s

TABLE Il. Comparison of the binding energies —e for the
last three bound states of »*Na, in the 0, state, predicted by
a semiclassical extrapolation and by a quantum extrapolation,
respectively.

v Semiclassical® (cm™!) Quantum® (cm™1)
39 4.1916 x 1071 0.92524 x 1071
38 1.1215 X 1078 1.0065 x 1078
37 1.9247 X 1077 1.8908 X 1077

%From [15]; Psee Fig. 1.
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FIG. 2. The y(e,) function for the attractive 1/r¢ interaction
with 7 = 0 [18] plotted vs (e,)'/. For systems satisfying
Bs > ro, the highly excited s wave bound spectrum is given
by the cross points of this function with a constant repre-
senting K.

Equation (12) asserts that the spacing [—e,(v — 1)]'/3 —
[—e,(v)]'/? is a universal constant (= 1.92762...) that
is independent of C¢ and w, independent of v, and inde-
pendent of the short-range part of the potential. Quantum
mechanically, the corresponding spectrum is given by the
crossing points between a universal y; function derived
from the attractive 1/r° solutions [18,19] and a constant.
Figure 2 shows this y,—o function plotted versus (e,)!/3.
A comparison between quantum and semiclassica pre-
dictions of the spacing [—e,(v — 1)]'/? — [—€,(v)]"? is
presented in Table I1l. It again shows the breakdown of
semiclassical predictions close to the threshold.

In conclusion, we have shown that Bohr’s correspon-
dence principle, which originated and worked well for
Coulombic systems, does not apply to systems in which
the asymptotic interaction is of the form of —C,,/r" with
n > 2. Insuch systems, the semiclassical approximation
fails near the threshold but can work better away from
it until eventually interactions having shorter range come
into play.
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TABLE IIl. Quantum results for [—e,(v — D]'/3 —
[—€,(v)]"/? for the s wave bound spectra of systems with

n =6 and B¢ > ry. Smaler values of v,,x — v correspond
to more highly excited states.
Umax — VU K)=-02 K'=-05 K’ =-20
0 2.03581 1.99746 1.96296
1 1.93747 1.93648 1.93464
2 1.93131 1.93108 1.93061
3 1.92955 1.92947 1.92928
Semiclassical 1.92762 1.92762 1.92762
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