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Repulsive 1/r 3 interaction

Bo Gao
Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606

~Received 3 November 1998!

Analytic solutions of the Schro¨dinger equation are presented for a repulsive 1/r 3 potential. They lead to an
in-depth understanding of scattering by a pure repulsive 1/r 3 interaction including exact cross sections and
phase shifts. Scattering by any potential which is asymptotically a repulsive 1/r 3 is also discussed.
@S1050-2947~99!03704-X#

PACS number~s!: 34.10.1x, 34.50.2s, 32.80.Pj, 03.65.2w
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I. INTRODUCTION

Solutions of the Schro¨dinger equation for 1/r n-type long-
range potentials play a key role in quantum physics es
cially in the understanding of states, both bound and c
tinuum, that are close to a threshold@1–4#, and in the
understanding of small-angle forward scattering which
dominated by contributions from large impact parameters
the context of atomic collisions, it can be stated that c
atom collisions and highly excited molecular vibration spe
tra can be described by the solution of the Schro¨dinger equa-
tion for the proper long-range potential plus a few para
eters that characterize the interactions of a shorter ra
@5–8#.

For a potential that is asymptotically a repulsive 1/r n, the
importance of the pure long-range solution becomes e
more profound. The repulsive nature of the potential ke
the particles away from each other so that unless the en
is sufficiently large, the particles do not ‘‘see’’ the intera
tions at the short range and scattering is described by
pure 1/r n solution over a wide range of energies.

The 1/r 3 interaction, of which the repulsive case is stu
ied in detail here, represents the radial dependence of r
nant electric dipole-dipole, magnetic dipole-dipole, a
quadrupole-monopole interactions. It plays an important r
in many physical processes including collisions of simi
atoms in a radiation field@9–12#, molecular spectra converg
ing to thresholds where two fragments can interact via re
nant dipole-dipole interactions@13–23#, and atom-surface in
teractions@24,25#. It is also important in the understanding
atom-electron and atom-ion interactions when the atom
volved is in a state that possesses a permanent quadru
moment.

Despite its significance, the 1/r 3 interaction is one of the
most poorly understood in the sense that it is the only lo
range potential of the form of 1/r n (n being a positive inte-
ger! for which even the threshold behavior has not been
orously derived @26–28#. Mathematically, this difficulty
originates from the fact that the radial Schro¨dinger equation
for a potential of the form of 1/r n with n.2 has two irregu-
lar singularities, one atr 50 and the other atr 5`. A
second-order differential equation of this type cannot
solved by a straightforward application of the power-ser
expansion that gave the Coulomb and harmonic-oscilla
solutions.

Using methods that have been developed through the
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lutions of 1/r 4 @29# and 1/r 6 potentials@5#, analytic solutions
for both the attractive@8# and repulsive 1/r 3 interactions
have been obtained. The repulsive solutions presented
give an in-depth understanding of the scattering by a p
repulsive 1/r 3 interaction in terms of a set of universal fun
tions that are independent of both the reduced mass and
C3 coefficient. The summary of the solution is presented
Sec. II with derivation given in Appendix A. Application to
the pure repulsive 1/r 3 scattering is discussed in Sec. II
Scattering by a potential which is only asymptotically
11/r 3 is discussed in Sec. IV. Discussions of the thresh
behavior and other issues are presented in Secs. V, and
clusions are given in Sec. VI.

II. THE REPULSIVE 1/ r 3 SOLUTIONS

Consider the radial Schro¨dinger equation for a7C3 /r n

potential

F d2

dr2
2

l ~ l 11!

r 2
6

b3

r 3
1 ēGul~r !50, ~1!

whereē[2me/\2, b3 is a length scale defined by

b3[2mC3 /\2, ~2!

and the plus and minus signs correspond to the attractive
the repulsive interactions, respectively.

Using a similar method that led to the 1/r 6 solutions
@29,5# ~see Appendix A!, we have found for a repulsive 1/r 3

potential that a pair of linearly independent solutions w
energy-independent behavior near the origin (r !b3) can be
written as

f e l
0 ~r !5

1

sin~2pn!
$@Fe l~2n!#21je l2@Fe l~n!#21he l%,

~3!

ge l
0 ~r !52$@Fe l~2n!#21je l1@Fe l~n!#21he l%, ~4!

wherej and h are another pair of linearly independent s
lutions given by

je l~r !5 (
m52`

`

bmr 1/2Jn1m~ ē1/2r !, ~5!
2778 ©1999 The American Physical Society
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he l~r !5 (
m52`

`

~21!mbmr 1/2J2n2m~ ē1/2r !, ~6!

bj5D j
G~n!G~n2n011!G~n1n011!

G~n1 j !G~n2n01 j 11!G~n1n01 j 11!
cj~n!,

~7!

b2 j5D j
G~n2 j 11!G~n2n02 j !G~n1n02 j !

G~n11!G~n2n0!G~n1n0!
cj~2n!.

~8!
c-

-

a
t

.

In Eqs.~7! and ~8!, j is a positive integer, and

D5~ ē !1/2b3/2, ~9!

n05 l 11/2, ~10!

cj~n!5b0Q~n!Q~n11!•••Q~n1 j 21!. ~11!

The coefficientb0 is a normalization constant which can b
set to 1, andQ(n) is given by a continued fraction
Q~n!5
1

12es

1

~n11!@~n11!22n0
2#~n12!@~n12!22n0

2#
Q~n11!

, ~12!
wherees is a scaled energy defined by

es5D25
1

4

e

~\2/2m!~1/b3!2
. ~13!

The Fe l(n) in Eqs.~3! and ~4! is defined by

Fe l~n!5D2n
G~11n01n!G~12n01n!

G~12n!
C~n!, ~14!

whereC(n)5 lim
j→`

cj (n).

Finally, n is a root, which can be complex, of a chara
teristic function

L l~n;es![~n22n0
2!2~es /n!@Q̄~n!2Q̄~2n!#. ~15!

HereQ̄ is defined by

Q̄~n![$~n11!@~n11!22n0
2#%21Q~n!, ~16!

and can be conveniently evaluated@30# as a continued frac
tion

Q̄~n!5
1

~n11!@~n11!22n0
2#2esQ̄~n11!

. ~17!

The pair of solutionsf 0 andg0 has been defined in such
way that they have energy-independent behavior near
origin (r /b3!1) characterized by

f e l
0 ~r !→

r→0

p21/2r 1/2~r /b3!1/4exp„22~r /b3!21/2
…, ~18!

ge l
0 ~r !→

r→0

2p21/2r 1/2~r /b3!1/4exp„2~r /b3!21/2
…, ~19!

for both positive and negative energies. The solutionf 0,
which goes to zero in the limit ofr→0, is thus the regular
solution that satisfies the boundary condition at the origin
he

The asymptotic behaviors off 0 andg0 at larger are given
for e.0 by

f e l
0 ~r ! →

r→`S 2

pkD 1/2FZf f sinS kr2
lp

2 D2Zf g cosS kr2
lp

2 D G ,
~20!

ge l
0 ~r ! →

r→`S 2

pkD 1/2FZg f sinS kr2
lp

2 D2Zgg cosS kr2
lp

2 D G ,
~21!

wherek5(2me/\2)1/2, and

Zf f~es!52
cos„p~n2n0!/2…

Ge l~2n!sin 2p~n2n0!

3H F11~21! lM e l tan
1

2
p~n2n0!GXe l

2F tan
1

2
p~n2n0!1~21! lM e l GYe l J , ~22!

Zf g~es!52
cos„p~n2n0!/2…

Ge l~2n!sin 2p~n2n0!

3H F tan
1

2
p~n2n0!1~21! lM e l GXe l

1F11~21! lM e l tan
1

2
p~n2n0!GYe l J , ~23!

Zg f~es!52
cos„p~n2n0!/2…

Ge l~2n! H F12~21! lM e l

3tan
1

2
p~n2n0!GXe l2F tan

1

2
p~n2n0!

2~21! lM e l GYe l J , ~24!
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Zgg~es!52
cos„p~n2n0!/2…

Ge l~2n! H F tan
1

2
p~n2n0!

2~21! lM e l GXe l1F12~21! lM e l

3tan
1

2
p~n2n0!GYe l J , ~25!

where

Ge l~n!5uDu2n
G~11n01n!G~12n01n!

G~12n!
C~n!, ~26!

M e l5Ge l~2n!/Ge l~n!, ~27!

Xe l5 (
m52`

`

~21!mb2m , ~28!

Ye l5 (
m52`

`

~21!mb2m11 . ~29!

For e,0, f 0 andg0 have asymptotic behaviors at larger
given by

f e l
0 ~r ! →

r→`

~2pk!21/2@Wf 2ekr2Wf 1~2e2kr !#, ~30!

ge l
0 ~r ! →

r→`

~2pk!21/2@Wg2ekr2Wg1~2e2kr !#, ~31!

wherek5(2mueu/\2)1/2,

Wf 2~es!52@Ge l~2n!sin 2p~n2n0!#21~12M e l !De l ,
~32!

Wf 1~es!52~21! l@2Ge l~2n!sin 2p~n2n0!#21

3cosp~n2n0!~11M e l !Ee l , ~33!

Wg2~es!52@Ge l~2n!#21~11M e l !De l , ~34!

Wg1~es!52~21! l@2Ge l~2n!#21 cosp~n2n0!

3~12M e l !Ee l , ~35!

De l5 (
m52`

`

dm , ~36!

Ee l5 (
m52`

`

~21!mdm , ~37!

and

dj5~2uDu! j

3
G~n!G~n2n011!G~n1n011!

G~n1 j !G~n2n01 j 11!G~n1n01 j 11!
cj~n!,

~38!
d2 j5uDu j
G~n2 j 11!G~n2n02 j !G~n1n02 j !

G~n11!G~n2n0!G~n1n0!
cj~2n!.

~39!

The x function @5,6#, which will be useful in a multichanne
formulation @8#, is defined by

x l~es![Wf 2 /Wg25@sin 2p~n2n0!#21
12M e l

11M e l
,

~40!

and the factor of 2 in front ofe2kr in Eqs.~30! and~31! has
been introduced to normalize the determinant of theW ma-
trix to 1.

TheZ and theW matrices, as well as thex function for a
specific l, are all universal functions ofes which are inde-
pendent of either the reduced mass or theC3 coefficient.
Different values ofC3 andm only rescale the energy accord
ing to Eqs.~13! and ~2!.

From Eqs.~18! and~19!, it is easy to show that thef 0 and
g0 pair has a Wronskian given by

W~ f 0,g0!52/p. ~41!

Since the Wronskian is a constant that is independent or,
the asymptotic forms off 0 andg0 at larger should give the
same result, which requires

det~Z!5Zf fZgg2Zg fZf g51, ~42!

det~W!5Wf 2Wg12Wg2Wf 151. ~43!

These relationships have been verified in our calculation

III. SCATTERING BY A PURE REPULSIVE 1/ r 3

POTENTIAL

For a pure repulsive 1/r 3 potential, the solution which
satisfies the boundary condition atr 50 is the regular solu-
tion f 0. For e.0, its asymptotic behavior at infinity, Eq
~20!, gives theK matrix

Kl[tand l
~31 !52Zf g /Zf f

52H F tan
1

2
p~n2n0!

1~21! lM e l GXe l1F11~21! lM e l tan
1

2
p~n2n0!GYe l J

3H F11~21! lM e l tan
1

2
p~n2n0!GXe l

2F tan
1

2
p~n2n0!1~21! lM e l GYe l J 21

, ~44!

from which all scattering properties can be derived. For
ample, the partial cross section for angular momentuml is
given by

s l /~pb3
2!5~2l 11!F 1

es

Kl
2

11Kl
2G . ~45!
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Figure 1 shows the energy dependencies of the partial c
sections forl 50,1,2,3. Figure 2 shows the energy depend
cies of the partial cross sections forl 54,5,6,7. Figure 3
shows the energy dependencies of the total scattering c
sections summed over alll ~the summation of cross section
from a largel to l 5` is discussed in Sec. V!.

Note that with proper scaling of energy, the cross secti
scaled bypb3

2 are independent of either theC3 coefficient or
the reduced mass just like theZ matrix given by Eqs.~22!–
~25!. In other words, they are universal properties applica
to all pure repulsive 1/r 3 interactions.

With the definitions

tanf l
~1!52Ye l /Xe l , ~46!

tanf l
~2!52

tan„p~n2n0!/2…1~21! lM e l

11~21! lM e l tan„p~n2n0!/2…
, ~47!

the scattering phase shift for a pure repulsive 1/r 3 interaction
can also be understood as the sum off l

(1) andf l
(2) ,

d l
~31 !5f l

~1!1f l
~2! . ~48!

Figure 4 shows the energy dependence of thes-wave phase
shift along with respective contributions fromf l

(1) andf l
(2) .

FIG. 1. Partial cross section vs scaled energy forl 50,1,2,3.

FIG. 2. Partial cross section vs scaled energy forl 54,5,6,7.
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IV. SCATTERING BY A POTENTIAL
WHICH IS ASYMPTOTICALLY A REPULSIVE 1/ r 3

If the potential is repulsive and varies as 1/r 3 only beyond
a certain ranger 0 , the wave function which satisfies th
boundary condition at the origin is no longerf 0. In particu-
lar, its behavior in the region ofr>r 0 is now characterized
by a linear superposition with both anf 0 andg0 component,

ue l~r !5Ae l@ f e l
0 ~r !2Kl

0ge l
0 ~r !#. ~49!

HereAe l is a normalization constant andKl
0 is a short-range

K matrix which depends only on the interactions of a shor
range. It is obtained by matching to the inner solution and
related to the logarithmic derivative of the wave function

Kl
05S f e l

0

ge l
0 D ~ f e l

0 8/ f e l
0 !2~ue l8/ue l !

~ge l
0 8/ge l

0 !2~ue l8/ue l !
. ~50!

The short-rangeK matrix Kl
0 is generally r-dependent. It

converges to a constant when the potential becomes
represented by a pure11/r 3. This radius of convergence i
the more rigorous definition ofr 0 , applicable even when
there are other 1/r n-type corrections to11/r 3.

FIG. 3. Total scattering cross section vs scaled energy fo
repulsive 1/r 3 interaction.

FIG. 4. s wave phase shift vs scaled energy for a pure repuls
1/r 3 interaction. Solid line:s wave phase shift. Dashed line: contr
bution fromf l

(1) . Dash-dotted line: contribution fromf l
(2) .
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From the asymptotic behaviors off 0 and g0 as given in
Eqs. ~20! and ~21!, it is straightforward to extract from the
asymptotic behavior ofue l that

Kl[tand l5~Kl
0Zgg2Zf g!~Zf f2Kl

0Zg f!
21. ~51!

This is the same quantum defect formulation for the scat
ing phase shift as previously presented for the 1/r 6 interac-
tion @5,6#. It serves the purpose of separating the effects
the long-range interaction from the interactions of a sho
range and separating common properties shared by l
classes of systems~all systems with11/r 3 asymptotic be-
havior have the sameZ functions with only the energy sca
ing being different! from system-specific properties~differ-
ent systems have differentKl

0). This separation is especiall
useful when the long-range interaction is strong as meas
by bn@r 0 , in which caseKl

0 varies with energy much mor
slowly compared to the energy variations ofZ @6#. Figures 5
and 6 are plots of the elements of theZ matrices fors andp
waves, respectively.

What makes the repulsive 1/r 3 interaction interesting and
easier to deal with is thatK0 is well approximated by zero
over a range of energies around the threshold. More
cisely, if the long-range repulsion is sufficiently strong a
the energy is sufficiently small so that the potential devia
from the pure 1/r 3 form only in the classically forbidden

FIG. 5. The elements of theZ matrix for thes wave.

FIG. 6. The elements of theZ matrix for thep wave.
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region, it easy to show from Eqs.~18!, ~19!, and~50! thatK0

is exponentially small. In other words, the scattering in t
case is well approximated by apure 11/r 3 interaction. This
is the mathematical correspondence of the physical expe
tion that the repulsive potential keeps the colliding fragme
apart so that they can hardly ‘‘see’’ the interactions at
short range except for large energies.

V. DISCUSSIONS

A. Computation

In computing the scattering properties and in a more g
eral quantum defect formulation@1,2,6,8#, the key quantities
to calculate are theZ matrix and thex function. The com-
putation is for the most part straightforward except one ne
to keep in mind that the roots of the characteristic functio
i.e., the propern to be used, can move into the comple
plane.

The characteristic functionL l(n;es) defined by Eq.~15!
is a function ofn with es as a parameter. It can be calculat
to the desired precision by using the continued fraction
pression forQ̄(n) as given by Eq.~17! and following the
standard computational procedures@30#. The roots ofL l
have the following properties foresÞ0: ~i! if n is a solution,
then2n is also a solution;~ii ! if n is a solution, thenn* is
also a solution; and~iii ! if n is a noninteger solution, then
6n1n wheren is an integer is also a solution. These pro
erties are consistent with the Neumann expansion and
similar to the case of the 1/r 6 potential@5#. For es.0, it can
be shown that the roots ofL l become complex beyond
critical scaled energyesc determined by the solution of

L l~n50;es!52n0
222esQ̄8~n50!50. ~52!

This critical scaled energy corresponds to thees at which a
pair of roots ofL l coalesces at an integer value and mov
subsequently into the complex plane to become a pair wh
are complex conjugate of each other. Bothn andn* give the
same physical results, and we will take the one with
positive imaginary part. Table I lists the critical scaled en
giesesc

(1) for the first 11 partial waves.
With proper definitions of theZ and theW matrices, such

as the way they are defined in Sec. II, all of their eleme

TABLE I. Critical scaled energies fore.0 and different angu-
lar momentuml. n becomes complex fore.esc

(1) .

l esc
(1)( l ) (esc

(1))1/6

0 2.52901631022 0.5417829
1 1.5852203100 1.079812
2 1.7361493101 1.609155
3 9.7005763101 2.143547
4 3.7253953102 2.682432
5 1.1238213103 3.224404
6 2.8632543103 3.768281
7 6.4378973103 4.313111
8 1.3145963104 4.858088
9 2.4863133104 5.402474
10 4.4172293104 5.945545
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PRA 59 2783REPULSIVE 1/r 3 INTERACTION
remain real even whenn is in the complex plane. This is
key check on the validity and the accuracy of numerical c
culations.

B. Energy-normalized solutions

For a pure repulsive 1/r 3 potential, the energy-normalize
regular solution is

ue l~r !5Nl~es! f e l
0 ~r !, ~53!

where

Nl~es!5cosd l
~31 !~Zf f !

21. ~54!

It satisfies the boundary condition at the origin and is ener
normalized with asymptotic behavior at larger given by

ue l~r ! →
r→`S 2

pkD 1/2

sinS kr2
lp

2
1d l

~31 !D , ~55!

where tand l
(31) is given by Eq.~44!.

If the potential is11/r 3 only beyond a radiusr 0 , the
energy-normalized regular solution is given forr>r 0 by

ue l~r !5Nl~es!@ f e l
0 ~r !2Kl

0ge l
0 ~r !#, ~56!

with

Nl~es!5cosd l~Zf f2Kl
0Zg f!

21. ~57!

It has an asymptotic behavior characterized by

ue l~r ! →
r→`S 2

pkD 1/2

sinS kr2
lp

2
1d l D , ~58!

where tand l is given by Eq.~51!.
The expression of energy normalized solutions in terms

f 0 andg0 facilitates the understanding of energy depend
cies of the matrix elements between different states@2#. For
example, the normalization factor given by Eq.~54! would
characterize the energy dependence of the Frank-Con
overlap between a pure repulsive 1/r 3 continuum state and a
state which is localized in the region ofr !b3 ~sincef 0 itself
is independent of energy in this region!. Figure 7 is a plot of
uNl(es)u versus the scaled energy fors, p, and d partial
waves.

C. Threshold behavior

The threshold behavior for a repulsive 1/r 3 interaction is
given by the smalles expansion of Eq.~51!. To the order of
(kb3), we obtain

tand l 50

5
~kb3!ln~kb3!1@3g1 ln 22~3/2!#~kb3!

11~kb3!ln~kb3!1@3g1 ln 22~13/6!2~p/2!#~kb3!
,

~59!

tand l>152
1

2l ~ l 11!
~kb3!, ~60!
l-

-

f
-

on

where g50.577 215 664 9 . . . is Euler’s constant@31#. In
the limit of energy going to zero, thes-wave phase shift goe
to zero but the partial cross section diverges logarithmica
according to

s l 50 /~pb3
2! →

es→0

4@ ln~kb3!#2. ~61!

The cross sections for other partial waves go to a cons
according to

s l>1 /~pb3
2! →

es→0

1/l 221/~ l 11!2. ~62!

In comparison, the partial cross sections for a 1/r 2 potential
diverge according to 1/e for all l. For a 1/r n potential with
n.3, thes wave partial cross section goes to a constant
the cross sections for other partial waves go to zero in
limit of zero energy@26,27#.

Even though Eqs.~59! and ~60! represent the expansion
to the same order of (kb3) for all l, their ranges of applica-
bility are very different for differentl. Figure 8 shows that

FIG. 7. uNl(es)u for a pure repulsive 1/r 3 potential. It represents
for example, the energy dependence of the Frank-Condon ove
between a pure repulsive 1/r 3 continuum state and a state which
localized in the region ofr !b3 .

FIG. 8. Comparison of threshold expansions and the exact re
of tand l for the s wave. Solid line: exact result. Dash-dotted lin
approximation given by Eq.~59!. Dashed line: the simple approxi
mation tand l5(kb3)ln(kb3).
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the approximation given by Eq.~59! is applicable only for a
very small range of energies around the threshold, espec
if one keeps only the (kb3)ln(kb3) term. In contrast, Fig. 9
shows that Eq.~60!, when used for a largerl 56, is accurate
over a much greater range of energies. The reason for
vastly different range of applicability is that Eq.~60! is not
only a small energy expansion, it is also a largel expansion.
It is applicable regardless of energy for sufficiently largel.
Thus the criterion for the validity of the threshold expansi
is not kb3!1. It is determined instead by

es!esc
~1 !~ l !, ~63!

a condition under whichn has not moved far fromn0 . From
the values ofesc

(1) given in Table I, one can see that th
threshold expansion for largel works over a much greate
energy range than the corresponding expansion for smal.

Since tand l can be calculated exactly, the threshold a
proximations given by Eqs.~59! and ~60! are generally not
recommended except for conceptual purposes. The exce
is the use of Eq.~60! for sufficiently largel. In particular, it
can be used to sum up the largel contributions at any energy
For example, lettingl m be the angular momentum beyon
which the condition, Eq.~63!, is well satisfied, Eq.~60! leads
immediately to

(
l 5 l m

`

s l /~pb3
2!51/l m

2 . ~64!

D. Comparison with the attractive 1/r 3 potential

As one would expect, solutions for repulsive and attr
tive 1/r 3 interactions are similar mathematically, as d
cussed in more detail in a separate paper on the attra
interaction@8# which will soon be submitted. The physica
behavior described by the two types of interactions is, ho
ever, vastly different. In particular, we emphasize that a p
attractive 1/r 3 potential does not constitute a meaning
quantum system by itself since the corresponding Sch¨-
dinger equation does not have a solution which can sat
the boundary condition atr 50. This is true for any attractive
potential of the type of 1/r n with n.2 @5#. For these types o

FIG. 9. Comparison of the threshold expansion and the e
result of tand l for l 56. Solid line: exact result. Dashed line: a
proximation given by Eq.~59!.
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systems, the21/r n solutions always have to be matched to
proper inner solution to yield a meaningful wave function.
other words, a short-range parameterK0 is always part of the
theory@6#, and the definition of a pure long-range phase sh
is not meaningful.

In contrast, a quantum system with a pure repulsive 1r n

interaction is well defined. A solution that satisfies t
boundary condition atr 50 does exist, and a pure long-rang
phase shift, such asd l

(31) , can be introduced. Furthermore
because the repulsive nature of the potential keeps the
ticles apart, apure repulsive 1/r n potential can be a good
approximation even when the inner part of the real poten
deviates from it.

VI. CONCLUSION

Analytic solutions of the Schro¨dinger equation for a re-
pulsive 1/r 3 potential have been presented which lead to
in-depth understanding of scattering by a potential which
asymptotically a repulsive 1/r 3. They have applications in
many quantum systems where the repulsive 1/r 3 interaction
can be due to resonant electric dipole-dipole, magn
dipole-dipole, or quadrupole-monopole interactions. In p
ticular, these solutions, together with the 1/r 6 solutions@5#
and the attractive 1/r 3 solutions@8#, provide the foundation
for a multichannel quantum defect formulation of slo
atomic collisions and highly excited molecular vibratio
spectra@32,6–8#. In this formulation, both the collisional an
the spectroscopical properties that are common to a w
class of systems are factored out and described analytic
while system-specific properties are characterized by a
parameters that depend weakly on energy. And with so
tions for both the ground and the excited asymptotic pot
tials, processes such as cold collisions of similar atoms
laser field@9–12# and photoassociative spectroscopy of sim
lar atoms@14–23# can also be understood in a more syste
atic manner.
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APPENDIX A: DERIVATION OF THE SOLUTIONS

The key steps in arriving at these solutions are paralle
those in the 1/r 6 solutions@5#. First, a solution is expresse
as a generalized Neumann expansion with proper argum
so that the coefficients satisfy a three-term recurrence r
tion. Second, the recurrence relations are solved using
tinued fractions. Third, the asymptotic behavior near the o
gin is obtained by examining a corresponding Laurent-ty
expansion.

1. Change of variable

Through a change of variable defined by

x5~r /L !a, ~A1!

ul~r !5r 1/2f ~x!, ~A2!

ct



an

th

-
gu-

el

PRA 59 2785REPULSIVE 1/r 3 INTERACTION
with a51 andL5( ē)21/2, Eq. ~1! can be written as

Fx2
d2

dx2
1x

d

dx
1x22n0

2G f ~x!52D
1

x
f ~x!, ~A3!

in which D5( ē)1/2b3/2 andn05 l 11/2. Except for the dif-
ferent definitions ofx, D, andn0 , and a different sign on the
right-hand side, this equation is identical to Eq.~34! of @5#,
and is solved in the same fashion in terms of the Neum
expansion and continued fractions@29,5#. The result is the
pair of solutions given by Eqs.~5! and ~6!.

2. Asymptotic behaviors

The asymptotic behaviors of solutions at larger are
straightforward. From the asymptotic expansions of
Bessel functions for large arguments@31#, we obtain fore
,0 (D5 ikb3/2)

D2nje l →
r→`

uDu2n~2pk!21/2~De le
kr2Ee l sinpne2kr !,

~A4!

Dnhe l →
r→`

uDun~2pk!21/2~De le
kr1Ee l sinpne2kr !,

~A5!

whereDe l andEe l are defined in Eqs.~36! and ~37!. For e
.0, the asymptotic behaviors at larger have the most sym
metric form for the pair of functions

f̄ e l~r !5 (
m52`

`

bmr 1/2Jn1m~ ē1/2r !, ~A6!

ḡe l~r !5 (
m52`

`

bmr 1/2Yn1m~ ē1/2r !, ~A7!

which are related toj andh by

f̄ e l~r !5je l~r !, ~A8!

ḡe l~r !5
1

sin~pn!
@je l cos~pn!2he l #. ~A9!

The larger behavior of f̄ and ḡ is easily shown to be

f̄ e l →
r→`

~2/pk!1/2@ae l sin~kr2 lp/2!2be l cos~kr2 lp/2!#,
~A10!
n

e

ḡe l →
r→`

~2/pk!1/2@2be l sin~kr2 lp/2!2ae l cos~kr2 lp/2!#,
~A11!

where

ae l5cos„p~n2n0!/2…Xe l2sin„p~n2n0!/2…Ye l ,
~A12!

be l5sin„p~n2n0!/2…Xe l1cos„p~n2n0!/2…Ye l ,
~A13!

with Xe l andYe l defined in Eqs.~28! and ~29!.
To derive the asymptotic behaviors at smallr, we rewrite

the j function as a Laurent-type expansion

je l~r !5r 1/2~z/2!22n (
m52`

`

pm~z/2!2m, ~A14!

wherez52(r /b3)21/2 and

pm5Dn(
s50

`
~21!s

s!G~n2m2s11!
D2s@D2~m12s!b2~m12s!#.

~A15!

The asymptotic behavior ofj at largez ~small r ) depends
only on them dependence ofpm for large m @33#. Making
use of the properties of the gamma function for large ar
ments @31# and the properties ofb2 j for large j, one can
show that

pm →
m→`

Fe l~2n!
1

m!G~22n1m11!
, ~A16!

whereFe l(n) is defined by Eq.~14!. Comparing them de-
pendence ofpm with the coefficients of the modified Bess
function @31#, we have

je l →
r→0

Fe l~2n!r 1/2 lim
r→0

I 22n„2~r /b3!21/2
…. ~A17!

Similarly for theh function we have

he l →
r→0

Fe l~n!r 1/2 lim
r→0

I 2n„2~r /b3!21/2
…. ~A18!

The asymptotic behaviors off 0 and g0 are easily derived
from those presented in this section.
ett.
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