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Analytic solutions of the Schidinger equation are presented for a repulsivé pbtential. They lead to an
in-depth understanding of scattering by a pure repulsivé ibteraction including exact cross sections and
phase shifts. Scattering by any potential which is asymptotically a repulsive id/also discussed.
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PACS numbgs): 34.10:+x, 34.50~s, 32.80.Pj, 03.65:w

I. INTRODUCTION lutions of 14% [29] and 1¢° potentialg 5], analytic solutions
for both the attractive[8] and repulsive £ interactions

Solutions of the Schidinger equation for 1/'-type long- have been obtained. The repulsive solutions presented here
range potentials play a key role in quantum physics espegive an in-depth understanding of the scattering by a pure
cially in the understanding of states, both bound and conrepulsive 1¥® interaction in terms of a set of universal func-
tinuum, that are close to a threshofd—4], and in the tions that are independent of both the reduced mass and the
understanding of small-angle forward scattering which isC5 coefficient. The summary of the solution is presented in
dominated by contributions from large impact parameters. Ir§ec. Il with derivation given in Appendix A. Application to
the context of atomic collisions, it can be stated that coldthe pure repulsive 1# scattering is discussed in Sec. lIl.
atom collisions and highly excited molecular vibration spec-Scattering by a potential which is only asymptotically a
tra can be described by the solution of the Sdimger equa-  + 1/r® is discussed in Sec. IV. Discussions of the threshold
tion for the proper long-range potential plus a few param-behavior and other issues are presented in Secs. V, and con-
eters that characterize the interactions of a shorter rangdusions are given in Sec. VI.
[5-8].

For a potential that is asymptotically a repulsive™lthe Il. THE REPULSIVE 1/ r3® SOLUTIONS
importance of the pure long-range solution becomes even
more profound. The repulsive nature of the potential keeps Consider the radial Schdinger equation for & C3/r"
the particles away from each other so that unless the energgptential
is sufficiently large, the particles do not “see” the interac-
tions at the short range and scattering is described by the d> 1(1+1) pBs

N ) X ; —— +—+¢€|u(r)=0, D)

pure 1/r" solution over a wide range of energies. dr2 r2 r3 ﬂ

The 13 interaction, of which the repulsive case is stud-
ied in detail here, represents the radial dependence of res
nant electric dipole-dipole, magnetic dipole-dipole, and
_quadrupole-m(_)nopole interactions. I_t plays an important _role B3=2uC4lH?, @)
in many physical processes including collisions of similar

atoms in a radiation fielf9—12}, molecular spectra converg- anq the plus and minus signs correspond to the attractive and
ing to thresholds where two fragments can interact via resog,o repulsive interactions, respectively.

nant dipole-dipole interactiojd3—23, and atom-surface in- Using a similar method that led to ther%/solutions

teractiong24,25. Itis also_imp_ortant in the understanding o_f [29,5] (see Appendix A we have found for a repulsiver®/
atom-electron and atom-ion interactions when the atom ing otential that a pair of linearly independent solutions with

volved is in a state that possesses a permanent quadruP‘gﬁergy—independent behavior near the origire85) can be

moment. ;
N . Lo written as
Despite its significance, ther® interaction is one of the

most poorly understood in the sense that it is the only long- 1

range potential of the form of 47 (n being a positive inte- f2|(r)= ———{[Fa(—v)] 4—[Fa(»)] 194},
gen for which even the threshold behavior has not been rig- sin(2mv)

orously derived[26—28. Mathematically, this difficulty

originates from the fact that the radial Sctireger equation 0, N _ _

for a potential of the form of 1/ with n>2 has two irregu- ga(n)=—{[Fa(=»] *a+[Fa(»] *na}, 4
lar singularities, one at=0 and the other at=o. A
second-order differential equation of this type cannot b
solved by a straightforward application of the power-serie
expansion that gave the Coulomb and harmonic-oscillator

solutions. - 12 i
r)= bmr Y23 x), 5
Using methods that have been developed through the so- £a(n) m:Z—oo m vem(€5°7) ©®

Xheree=2uelt?, B3 is a length scale defined by

()

where ¢ and # are another pair of linearly independent so-
iutions given by

1050-2947/99/5@4)/27789)/$15.00 PRA 59 2778 ©1999 The American Physical Society



PRA 59 REPULSIVE 1f3 INTERACTION 2779

* o In Egs.(7) and(8), j is a positive integer, and
ma(h= 2 (=1)"our_, n(e"), (6
e A= ()82, )
Fv)I'(v—vg+t DT (v+rvy+1)

C=Al . —
b= A R L T = vt ] T DT (vt vt j+ 1) 5 vo=I+1/2, (10
(7)

Ci(»)=beQ(»)Q(r+1)---Q(v+j—1). 11
jF(V—j+1)F(v—v0—j)r(u+v0—j) 3
F(v+)I'(v—rvg)l'(v+vy) Cj(= 7). The coefficientby is a hormalization constant which can be
(8) set to 1, andl(v) is given by a continued fraction

b,j:A

1
Q(w) , (12

1
S DG A 2l 2=

wheree is a scaled energy defined by The asymptotic behaviors &f andg® at larger are given
for e>0 by
a2 < (13 /
€= =T . r—o 2 1/2 | T | T
4 (32 2 .
(h%/20)(1/B3) f9(r) — (ﬁ) _fosm(kr—7)—ngcos<kr—7”,
The F,(v) in Egs.(3) and(4) is defined by (20
7VF(1+ V0+V)F(1—VO+ V) r—o/ o 1/2] | I
Fa(v)=A (=0 C(v), (14 g%(r) — (ﬁ) ngsin(kr—g>—zggcos(kr—;”,
: ' (21
WhereC(v)=I|ijm ci(v).
Finally, » is a root, which can be complex, of a charac- wherek=(2.€/4%)'? and
teristic function . cos(m(v— vg)l2)
J— I €)= — S
A(vie)=(r2= 1))~ (es/M[Q - Q—»)]. (15 T Ga(=v)sin2m(v—wo)
_ 1
HereQ is defined by x[ 1+(—-1)'My tanza-r(v— vg) | X
QU ={(r+DI(»+1)*~ 1]} 'Q(»), (16 1
- tanETr(v—vo)+(—1)'ME| Yaf, (22
and can be conveniently evaluat30] as a continued frac-
tion S L codn(v=roi2)
_ 1 fol€s)= Gq(—v)sin2w(v—vyg)
= p— . 1
= )=o) 1 |
X tanzﬂ'(v—vo)—k(—l) M1 Xq
The pair of solutiong® andg® has been defined in such a
way that they have energy-independent behavior near the | 1
origin (r/B3<1) characterized by H 1+ (=) Matanga(v—vo) Yo, (23
r—0
_ _ co — )2
£(r) — 7 YA VA1l B3) Y exp(—2(r/B5) YD), (18) zgf(eg:—%ul—(—nwd
r—0 1 1
g&(r) — — 7 VAV By exp(2(r/Bs) 1P, (19) xtarE m(v—vg) | Xg— tanzw(v— vg)

for both positive and negative energies. The solutf@n
which goes to zero in the limit of —0, is thus the regular —(—1)'ME|}YE|], (29
solution that satisfies the boundary condition at the origin.
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codm(v—vg)/2) 1 T—j+DI'(v—rvo— ' (v+vo—])
Zgql &) Ga(—v) tang m(v=ro) Il S vy ey e w28
(39
| |
— (=D Mg[Xg+[1-(=1)Mgq The x function[5,6], which will be useful in a multichannel
formulation[8], is defined by
1
Xtaniﬂ'(v—vo) YE|], (25 _ 1-M,
Xi(€)=W;_ IWy_=[sin 277(”_”0)]711+Me| ,
where (40
L(1+vo+v)[(1—vo+v) and the factor of 2 in front 0~ " in Eqgs.(30) and(31) has
Ga(v)=|A[7Y F(1=v) (v), (260  been introduced to normalize the determinant of \iena-
trix to 1.
Ma=Ga(=»)/Ga(v), @7 The Z and theW matrices, as well as the function for a

specificl, are all universal functions oég which are inde-
% pendent of either the reduced mass or @ coefficient.
X, = 2 (—1)™byp, (28) pifferent values ofC; andu only rescale the energy accord-
m=—o ing to Egs.(13) and (2).
From Eqs(18) and(19), it is easy to show that th&’ and
g° pair has a Wronskian given by

©

Ya= 2 (—=1)™bomys- (29)
m= e W(f°,g%) =2/7. (41)

~Fore<0, f® andg® have asymptotic behaviors at large  Since the Wronskian is a constant that is independem of
given by the asymptotic forms of® andg? at larger should give the
same result, which requires

— 00

r
£(r) = (2mx) YW _e — Wy, (26™)],  (30) det2)=Z1Zgq~ ZgiZtg=1, (42)

r o de(W)=W;_Wy, —Wy_ Wi, =1. (43
g2(r) — (2mK) MWy e — Wy, (2e7)], (3D
These relationships have been verified in our calculations.
where k= (2u|e|/%2)Y?,
Il. SCATTERING BY A PURE REPULSIVE 1/ r3

W;_(€)=—[Gy4(—v)sin2m(v—rg)] {(1-M_)D,, POTENTIAL
32
( For a pure repulsive i} potential, the solution which
Wi, (€)= —(—1)'[2G (- v)sin 2m(v—vy)] satisfies the boundary condition a0 is the regular solu-
tion f°. For €>0, its asymptotic behavior at infinity, Eq.
Xcosm(v—vg)(1+My)E,, (33 (20), gives theK matrix
Wy (e9=—[Ga(~9)] H1+Ma)Da, (34 Ki=tand"'=-Z/Zy
_ 1
Wy (€)= —(—1)'[2G4(— )]~ * cosm(v—vp) =—[ tan 5 m(v = vo)
X(l_Mel)Eeli (35) 1
. +(=D'M g |Xq+| 1+ (= 1)'Mq tanz m(v—vo) Yd}
Da= 2 dn, (36) .
X{ 1+ (—1)'M tan 5 7(v—ro) | X
Ea= (=1)"dy, (37) 1 -t
! m;oo m — tanzﬂ'(v—vo)-i-(—l)ll\/ld Yq , (44)
and from which all scattering properties can be derived. For ex-
d=(—|A]) ample, the partial cross section for angular momentum
J

given by
F(v)I'(v—vot+t HI'(v+rvy+1)

AT (r=vgt ] T DT (v vg+ ]+ 1) oI

2

[ B = (21 +1)| - Ki
o l(mB3)=( )E_sl+K|2

v),
(39

. (45
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FIG. 1. Partial cross section vs scaled energylfef,1,2,3. FIG. 3. Total scattering cross section vs scaled energy for a

. ] ) repulsive 1/ interaction.
Figure 1 shows the energy dependencies of the partial cross

sections fol =0,1,2,3. Figure 2 shows the energy dependen-
cies of the partial cross sections fo=4,5,6,7. Figure 3
shows the energy dependencies of the total scattering cross
sections summed over dl(the summation of cross sections
from a largel to | = is discussed in Sec.)V

Note that with proper scaling of energy, the cross section
scaled byzrﬁ% are independent of either ti@; coefficient or
the reduced mass just like tiZematrix given by Eqs(22)—
(25). In other words, they are universal properties applicable
to all pure repulsive 1 interactions.

With the definitions

IV. SCATTERING BY A POTENTIAL
WHICH IS ASYMPTOTICALLY A REPULSIVE 1/ r3

If the potential is repulsive and varies as3only beyond
a certain range,, the wave function which satisfies the
boundary condition at the origin is no long&t. In particu-
lar, its behavior in the region af=r is now characterized
by a linear superposition with both @A andg® component,

ua(r)=Aq[f4(r—KPg (1. (49)

HereA, is a normalization constant arllqo is a short-range
K matrix which depends only on the interactions of a shorter

tang{M'=—Y /X4, (46)  range. It is obtained by matching to the inner solution and is
related to the logarithmic derivative of the wave function by
tan(m(v—r)/2)+(—1)'M, , ,
tang{? = — 1:(‘ (1)'M O)t r)( (( ) )/2|)’ (47) KO (f2|) (fQ/112)—(ua'Tug) (50
- g r@anm(v—rvp = ; ; .
| ° 92/ (9%'/9%) — (ua'lug)

the scattering phase shift for a pure repulsive Iiteraction

The short-rangeK matrix K° is generallyr-dependent. It
can also be understood as the sumpd? and (%, J IS 9 yroe

converges to a constant when the potential becomes well
represented by a pure 1/r3. This radius of convergence is
the more rigorous definition of,, applicable even when
there are other 1-type corrections tot 1/r3.

53 =M+ of?. (48)

Figure 4 shows the energy dependence ofgheave phase
shift along with respective contributions fro#f®) and ¢{? .

0.03

oo
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~
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Phase Shift ( rad )

g
o
=

Partial Cross Section (11:[332)

0.00 . . . . . . . . . g

€ FIG. 4. swave phase shift vs scaled energy for a pure repulsive
1/r3 interaction. Solid lines wave phase shift. Dashed line: contri-

FIG. 2. Partial cross section vs scaled energyl for},5,6,7. bution from ¢{* . Dash-dotted line: contribution from{® .
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10 TABLE I. Critical scaled energies foe>0 and different angu-
------------------------- lar momentum. » becomes complex foe>el?) .
0 N | ) (lyve
W ook e 0 2.529016¢10 2 0.5417829
B S 1 1.58522( 10° 1.079812
§ ol s wave 2 1.73614% 10t 1.609155
— Tyl 3 9.700576< 10t 2.143547
-------- z, 4 3.725395 107 2.682432
< -y | T 5 1.12382K 10° 3.224404
""" Zy 6 2.863254 10° 3.768281
S S S E—— 7 6.43789% 10° 4313111
o 1 2 3 4 6 7 & 9 10 8 1.314596¢10* 4.858088
& 9 2.48631% 10° 5.402474
10 4.41722% 10¢ 5.945545

FIG. 5. The elements of the matrix for thes wave.

From the asymptotic behaviors 6f andg® as given in region, it easy to show from Eqg&l8), (19), and(50) thatK°
Egs.(20) and (21), it is straightforward to extract from the s exponentially small. In other words, the scattering in this
asymptotic behavior ofi that case is well approximated bypre + 1/r3 interaction. This
is the mathematical correspondence of the physical expecta-
tion that the repulsive potential keeps the colliding fragments
apart so that they can hardly “see” the interactions at the
This is the same quantum defect formulation for the scattershort range except for large energies.
ing phase shift as previously presented for the® Iiterac-
tion [5,6]. It serves the purpose of separating the effects of
the long-range interaction from the interactions of a shorter
range and separating common properties shared by large

classes of system@ll systems with+ 1ir® asymptotic be- In computing the scattering properties and in a more gen-
havior have the same functions with only the energy scal- g quantum defect formulatidi,2,6,9, the key quantities
ing being different from system-specific propertiggiffer- 4 cajculate are th& matrix and they function. The com-
ent systems have differeKqO)_. This separation is especially pytation is for the most part straightforward except one needs
useful when the long-range interaction is strong as measurag keep in mind that the roots of the characteristic function,
by By>To, in which caseK{ varies with energy much more e, the propers to be used, can move into the complex
slowly compared to the energy variationsf6]. Figures 5  plane.
and 6 are plots of the elements of thenatrices fors andp The characteristic function(v;e,) defined by Eq(15)
waves, respectively. is a function ofv with €5 as a parameter. It can be calculated
What makes the repulsiver®/interaction interesting and to the desired precision by using the continued fraction ex-
easier to deal with is that® is well approximated by zero pression fora( v) as given by Eq(17) and following the

over a range of energies arognd.the thrgshold. More présiandard computational procedurg&0]. The roots of A,
cisely, if thg Iongjrgnge repulsion is sufficiently strong ,andhave the following properties faz,#0: (i) if » is a solution,
the energy is sufficiently small so that the potential deviate; ., _ , is also a solution(ii) if » is a solution, then/* is

3 - - .
from the pure I/ form only in the classically forbidden also a solution; andiii) if v is a noninteger solution, then

*p+n wheren is an integer is also a solution. These prop-
erties are consistent with the Neumann expansion and are
similar to the case of the n9 potential[5]. For e.>0, it can

be shown that the roots of;, become complex beyond a
critical scaled energy,. determined by the solution of

Ki=tand|=(KPZgg—Zrg) (Z1—K[Zgp) 1. (5D)

V. DISCUSSIONS

A. Computation

A(v=0;e5)=— 12— 2€Q" (v=0)=0. (52)

Z matrix

This critical scaled energy corresponds to theat which a
pair of roots ofA| coalesces at an integer value and moves
subsequently into the complex plane to become a pair which
are complex conjugate of each other. Betandv* give the
same physical results, and we will take the one with the
4 5 6 7 8 9 10 positive imaginary part. Table 1 lists the critical scaled ener-
€ giesel!) for the first 11 partial waves.

With proper definitions of th& and thew matrices, such

as the way they are defined in Sec. Il, all of their elements

FIG. 6. The elements of thé matrix for thep wave.
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remain real even when is in the complex plane. This is a

key check on the validity and the accuracy of numerical cal-

culations.

B. Energy-normalized solutions

For a pure repulsive 7 potential, the energy-normalized
regular solution is
Ua(r)=Ni(e) F(r), (53
where
Ni(es)=coss*"(Zg) 7. (54)

It satisfies the boundary condition at the origin and is energy-

normalized with asymptotic behavior at larggiven by

r—el o 1/2
Ug(r) — (ﬁ) sin

I
kr—;+6f3+)>, (55)
where tans®*) is given by Eq.(44).

If the potential is+1/r® only beyond a radius,, the
energy-normalized regular solution is given feer, by

Ua(r)=Ai(e)[fa(r)—KPga(r)], (56)
with
Ni(es)=c088(Zi1—KPZgr) ™. (57)
It has an asymptotic behavior characterized by
r—ewl 9 1/2 | 77
Uug(r) — (H) sin(kr—7+ 5|), (58

where tans, is given by Eq.(51).

REPULSIVE 1f3 INTERACTION
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FIG. 7. |N(eJ)| for a pure repulsive 17 potential. It represents,
for example, the energy dependence of the Frank-Condon overlap
between a pure repulsiverf/continuum state and a state which is
localized in the region of < ;.

where y=0.5772156649 ... is Euler's constafgl]. In

the limit of energy going to zero, thewave phase shift goes
to zero but the partial cross section diverges logarithmically
according to

es—0

oo/ (mB3) — 4[In(kB3)]>.

The cross sections for other partial waves go to a constant
according to

(61)

ESA)O
o=1/(wB3 — N>—1/1+1)2 (62
In comparison, the partial cross sections for & Hotential
diverge according to /for all I. For a 1f" potential with
n>3, thes wave partial cross section goes to a constant and

The expression of energy normalized solutions in terms ofhe cross sections for other partial waves go to zero in the
9 andg® facilitates the understanding of energy dependentimit of zero energy[ 26,27).

cies of the matrix elements between different st@fgsFor
example, the normalization factor given by E&4) would

Even though Eqs(59) and(60) represent the expansions
to the same order ofk{33) for all I, their ranges of applica-

characterize the energy dependence of the Frank-Conddility are very different for different. Figure 8 shows that

overlap between a pure repulsive *Ltontinuum state and a
state which is localized in the region o& 35 (sincef? itself
is independent of energy in this regjoffrigure 7 is a plot of
|NV(es)| versus the scaled energy fer p, and d partial
waves.

C. Threshold behavior

The threshold behavior for a repulsive dinteraction is
given by the smalkg expansion of Eq(51). To the order of
(kB3), we obtain

tand —¢
(kB3)In(kB3) +[3y+In2—(3/2)](kBs)

1+ (kB3)In(kB3) +[3y+In2—(13/6) — (7/2)](kB3)’
(59

1
tand=1=— m(kﬁg), (60)

-0.00 [

0.05 "

0 0.0002 0.0004

88

0.0006 0.0008 0.001

FIG. 8. Comparison of threshold expansions and the exact result
of tans, for the s wave. Solid line: exact result. Dash-dotted line:
approximation given by Eq59). Dashed line: the simple approxi-
mation tand, = (kB3)In(kBs).
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systems, the- 1/r" solutions always have to be matched to a
proper inner solution to yield a meaningful wave function. In
other words, a short-range paramet@ris always part of the
theory[6], and the definition of a pure long-range phase shift
is not meaningful.

In contrast, a quantum system with a pure repulsivé 1/
interaction is well defined. A solution that satisfies the
boundary condition at=0 does exist, and a pure long-range
phase shift, such a§**), can be introduced. Furthermore,
because the repulsive nature of the potential keeps the par-
ticles apart, goure repulsive I/ potential can be a good
, , , , , , , , , approximation even when the inner part of the real potential
O 10 20 30 40 50 60 70 80 90 100 deviates from it.

VI. CONCLUSION

FIG. 9. Comparison of the threshold expansion and the exact ) . . .
result of tad, for |=6. Solid line: exact result. Dashed line: ap- A_nalytlcs 30|Ut|0_nS of the Schubnger equathn for a re-
proximation given by Eq(59). pulsive 1f° potential have been presented which lead to an

in-depth understanding of scattering by a potential which is
the approximation given by E@59) is applicable only for a asymptotically a repulsive 7. They have applications in
very small range of energies around the threshold, especialj?@ny quantum systems where the repulsive’ Iriteraction
if one keeps only thek3s)In(kBs) term. In contrast, Fig. 9 C€an be due to resonant electric dipole-dipole, magnetic
shows that Eq(60), when used for a larger=6, is accurate dipole-dipole, or quadrupole-monopole interactions. In par-
over a much greater range of energies. The reason for thficular, these solutions, together with the ®Lsolutions[5]
vastly different range of applicability is that E¢0) is not ~ and the attractive i? solutions[8], provide the foundation
only a small energy expansion, it is also a latgpansion. for a multichannel quantum defect formulation of slow
It is applicable regardless of energy for sufficiently latge atomic collisions and highly excited molecular vibration
Thus the criterion for the validity of the threshold expansionspectrd32,6—8. In this formulation, both the collisional and

is notkBs<1. It is determined instead by the spectroscopical properties that are common to a wide
class of systems are factored out and described analytically,
es<elN(), (63)  while system-specific properties are characterized by a few

parameters that depend weakly on energy. And with solu-
a condition under which has not moved far fronry. From  tions for both the ground and the excited asymptotic poten-
the values ofel’) given in Table I, one can see that the tials, processes such as cold collisions of similar atoms in a
threshold expansion for largeworks over a much greater laser field[9—-12 and photoassociative spectroscopy of simi-
energy range than the corresponding expansion for dmall lar atoms[14—23 can also be understood in a more system-
Since tars, can be calculated exactly, the threshold ap-atic manner.
proximations given by Eq9459) and (60) are generally not

recommended except for co_n_ceptual purposes. T_he exqeption ACKNOWLEDGMENTS
is the use of Eq(60) for sufficiently largel. In particular, it
can be used to sum up the lafdgeontributions at any energy. | would like to thank Tom Kvale for helpful discussions

For example, lettind,,, be the angular momentum beyond and for reading the manuscript.
which the condition, Eq(63), is well satisfied, Eq(60) leads

immediately to APPENDIX A: DERIVATION OF THE SOLUTIONS

©

2 o1 /(B2 = 11 64 The key steps in arriving at these solutions are parallel to
= 73) m- 64 those in the 1F solutions[5]. First, a solution is expressed
" as a generalized Neumann expansion with proper argument
so that the coefficients satisfy a three-term recurrence rela-
tion. Second, the recurrence relations are solved using con-
As one would expect, solutions for repulsive and attractinued fractions. Third, the asymptotic behavior near the ori-
tive 143 interactions are similar mathematically, as dis-gin is obtained by examining a corresponding Laurent-type
cussed in more detail in a separate paper on the attractivexpansion.
interaction[8] which will soon be submitted. The physical
behavior described by the two types of interactions is, how-
ever, vastly different. In particular, we emphasize that a pure
attractive 1/° potential does not constitute a meaningful ~ Through a change of variable defined by
guantum system by itself since the corresponding Schro o
dinger equation does not have a solution which can satisfy x=(r/iL)%, (AD)
the boundary condition at=0. This is true for any attractive
potential of the type of 1/ with n>2 [5]. For these types of u(r)=r?f(x), (A2)

D. Comparison with the attractive 1/ potential

1. Change of variable



PRA 59

with a=1 andL=(e) 2 Eq. (1) can be written as

d2

d 2 1
X d—+x—+X2—Vo foo=2a-1(x),  (A3)

dx

in which A = (€)28,/2 and vo=1+1/2. Except for the dif-
ferent definitions ok, A, andv,, and a different sign on the
right-hand side, this equation is identical to Eg4) of [5],

and is solved in the same fashion in terms of the Neumann

expansion and continued fractiof29,5]. The result is the
pair of solutions given by Eq$5) and(6).

2. Asymptotic behaviors

The asymptotic behaviors of solutions at largeare

straightforward. From the asymptotic expansions of the

Bessel functions for large argumen&l], we obtain fore
<0 (A=ikpB5/2)

r—oo
A7"Eq — |A]7M(2mK) T YAD 4e —Eqg sinmre™ ),
(A4)

r—oo
A"ngq — |A|"(2wK) YYD e +E, sinmre "),
(A5)

whereD, andE_ are defined in Eq9.36) and (37). For €
>0, the asymptotic behaviors at largdave the most sym-
metric form for the pair of functions

fa(= 2 by, m(e"), (6)
ga(n)= 2 byrY, . (), (A7)
which are related t@ and » by
fa(n)=£4(r), (A8)
ga(n)= Sm( () L6 COSTP) = 7] (A9)

The larger behavior off_andgis easily shown to be

T ::O(Z/ﬂ'k)llz[ad sin(kr—1m/2)— B, cogkr—1m/2)],
(A10)
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r—oo

g4 — (2l7k)Yq — B, sin(kr —1/2) — ay cogkr — 1 7/2)],

(A11)
where
aq=codm(v—vy) )X, —sin(m(v—vy)/2)Y,,
(A12)
Ba=sin(m(v—wvg)2)X 4+ codm(v—14)I2)Y 4,
(A13)

with X, andY, defined in Eqs(28) and (29).
To derive the asymptotic behaviors at snralive rewrite
the ¢ function as a Laurent-type expansion

o

» 2

Eq(n)=rYzI2)~ pm(2/2)%™, (A14)

wherez=2(r/B3) " *? and

o0

_13
pmAZ S

oS! I'(v—m—s+1)

AZS[A _(m+2s)b—(m+25)]-
(A15)

The asymptotic behavior of at largez (small r) depends
only on them dependence op,, for large m [33]. Making
use of the properties of the gamma function for large argu-
ments[31] and the properties ob_; for large j, one can
show that

m— oo

Pm — FE'(_V

)m!F(—Zv+m+1)’ (A16)

whereF (v) is defined by Eq(14). Comparing then de-
pendence op,, with the coefficients of the modified Bessel
function[31], we have

r—0
a— Fa(=nr21lim 1_5,2(r/B3) 3.  (AL7)
r—0
Similarly for the » function we have
r—0
Nel — Fel(v)rl/2 lim IZV(Z(r/BS)ilIZ)- (A18)

r—0

The asymptotic behaviors df® and g° are easily derived
from those presented in this section.
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