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A general theory of slow-atom collisions is presented with special emphasis on the effects of nuclear
statistics and atomic fine and/or hyperfine structures. Symmetry properties of the collision complex and cor-
relations between the molecular states and the separated-atom states are carefully examined. The frame trans-
formations between various angular momentum coupling schemes are derived, which, in combination with the
multichannel quantum defect theory, provides a solid foundation for the computation and the physical inter-
pretation of slow-atom collision processes. The theory reduces to those ofebimlofPhys. Rev. B38, 4688
(1988] and Zygelmaret al. [Phys. Rev. A49, 2587 (1994); 50, 3920(1994] in their respective ranges of
validity. [S1050-294796)02108-1

PACS numbdss): 34.10+x, 32.80.Pj

[. INTRODUCTION different angular momenta or for the same atoms in different
electronic states. The theory presented in this paper is more
The importance and the novelty of cold-atom collisionsgeneral. For example, it is capable of treating resonant
are well documented. A review of the theoretical aspects ogharge exchange processes such as
this problem can be found iflL]. The experimental aspects
are reviewed in2]. The recent discovery of Bose-Einstein Rb"+Rb—Rb+Rb",
condensation in a weakly interacting atomic vap8fis &  \yhich have not been studied at cold temperatures achievable
further motivation for a carefu_l examination of this subject. ; ~tom traps. It is also capable of treating resonance ex-
Compared to atomic collisions at room temperatures Othange processes such as
above, cold-atom collisions have a number of distinctive fea-
tures. First, long-range interactions are importpdt Sec- Rb* +Rb—Rb+Rb*,
ond, hyperfine structures, if there are any, play a significant
role in determining the collision dynamif®,5]. This is eas- provided that the collision proceeds sufficiently fast so that
ily understood. For a typical ground hyperfine splitting of 1 spontaneous emissiofand laser pumping if the collision
GHz, the atomic kinetic energy becomes comparable to thbappens inside a laser fig¢ldan be ignored during the colli-
hyperfine structure at around 0.1 K, which is where the hy-sion. Furthermore, as the success of previous works of Mies
perfine effects become important. Third, if the collision hap-and Julienng17,22 and Gribakin and Flambaur,8,23
pens in a near-resonant laser field, the effects of spontaneoimglicates, the effects of long-range interactions can be treated
decay and optical pumping also become imporf@1,2.  most naturally and effectively using the multichannel quan-
Lastly, cold-atom collisions are sensitive to the potential, i.e.fum defect theoryMQDT) [24—-28. The work of Stoof and
a small error in the potential can lead to a large uncertainty iVerhaar and their collaboratof20,21] has not taken full
the cross sectiof¥,7,8. This is, for the most part, a general advantage of it. By incorporating MQDT and the frame
feature of slow-atom collisions, due mainly to the fact thattransformation techniqug29—-33, we provide a method for
atoms are much heavier than electrgsse Sec. Il A. quickly obtaining complete information about hyperfine col-
There are many theories of slow-atom collisig8s-19]. lisions from existing single channel calculatiof4,8,23.
But the effects of the atomic hyperfine structure and thelhe method can be refined systematically, and it leaves the
nuclear statistics have not been treated in a fully systematidoor open for anR-matrix [35—-4Q type of treatment of
manner. It should be pointed out that the notion of nucleashort-range interactions, which may be needed if highly ac-
statistics is more fundamental than the notion of atomic stacurate results are desired.
tistics. For example, is &Rb atom in the groun& =3 state Our theory of a slow-atom collision between atoAsnd
distinguishable from &°Rb atom in the grouné =2 state? B is presented in Sec. Il and is divided into subsections ac-
What about &°Rb™ ion and a®*Rb atom? These are impor- cording to the classification of a collision into three different
tant questions related to the quantum statistics of an atomicategories. Section Il A deals with the case &f+ Zg,
vapor. We will get back to them in Sec. IV. The point to be which represents a collision between two different atoms,
made here is that at a more fundamental level, the task is touch as Rb+ Ar. It is of interest in the understanding of
ensure that the total wave function has proper symmetry uneptical properties of gas cells and atomic spectroscopy. Sec-
der the exchange of nuclei. tion Il B deals with the case of a collision between two simi-
The theory of Stoof and Verhaar and their collaboratordar atoms whose nuclei have the same cha#e~Zg), but
[20,21] has captured almost all the essential physics of coldre otherwise distinguishabldue to either different spin or
collisions between alkali-metal atoms in their ground statesdifferent mass An example of this type of collision is
However, owing to the effective-atom nature of their theory, ®Rb + 8’Rb. Section Il C deals with the collision between
one basically has to develop a different theory for atoms witttwo atoms with identical nuclei, such &Rb + #Rb and
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Rb™ + *°Rb. It is our hope that by putting these different TM-P TM.P
cases together in a concise fashion, their similarities and dif- 'PTMTPT:Eb: ® T T(R)G, T (R)/R, (2
ferences will become more transparent. Various angular mo-

mentum_ coupling schemes are discussed in Sec. 11 D an\g/here the summation is over one set of channéhaill use
Appendix A. Frame transformations and the MQDT are d's'indicesa andb to refer to any set of channels,andj to

cussed in Sec. IIE. refer to the fragmentation channels. Indieesind 8 will be
reserved for condensation channgt8].) The channel func-
Il. THEORY tions CDZMTPT(R) contain both the electronic wave function

We consider a collision between two atomvsandB in a  and the angular part of the relative motion of the centers of
pair of LS coupled manifolds ¢,L,S;) and (a,L,S,). The Mass. They haye d|ffere_nt symmetry properties fpr three
atoms are identified by their respective nuclei. If the twoclasses of collisions mentioned earlier, and will be discussed

nuclei are identical, this identification is facilitated by label- In detail in Secs. Il A-II C. L _
ing one of themA and the other on&. Substituting Eq(2) into the Schrdinger equation,
The Hamiltonian describing the two colliding atoms can

TMtP+_ TMLP
be written as Hy Mrr=Ey T,

52 and making use of the orthogonality properties of the chan-
H=— 2—V§+ Hgo+H¢+Hps, (1)  hel functions, we obtain, upon ignoring both the radial and
2 the angular nonadiabatic coupling terfdd], a set of close-

coupling equations:

whereu is the reduced mass of the two atords.represents
the spin-orbital interactions, ardi, ; represents the hyperfine 2 d? 11, + 1)
interactions. Equatiofil) serves talefinethe adiabatic Born- o ﬂ drR2 W
Oppenheimer HamiltoniaH g to be used in this papgd1].

For a collision between two atoms having fine and/or hy-
perfine structures, a fragmentation char{d&] having a to-
tal angular momentunt and a projection on a space-fixed

—E GZMTPT( R)

+§ [VEQ(R) + V(R +VA(R)IG! T T(R) =0,

axis My is specified by a set of quantum numbers such as (3a)
in which
(a1L1S13111F 1) A @2l 2S:351 2F 2)gFITM 1,

VEBO(R)=(® ™M ™PT|Hg @ MY, 3b
whereF results from the coupling oF; andF,; | is the an (RI=(P, [Heol®, ) (3b)
relative orbital angular momentum of the centers of mass of § L TMeP TM-P.
the two atoms. This set of quantum numbers specifies an Vap(R)=(®, ™" T|Hf|q)b 2 (30
angular momentum coupling scheme which diagonalizes WP WP
both the spin-orbital and the hyperfine interactions at large VQL(R)E((I)a T Hp @, 7). (3d
interatomic separations. We will identify this coupling
scheme ag,F,J,F,F, or FF coupling for short. We look for solutions which satisfy the physical boundary

There are other possible representations of channels cotonditions
responding to different angular momentum coupling
schemes. One of them is specified by quantum numbers such . R e
as ALY ® T8~ giKT(E)IR,  (4)

jeo
(@1h1S111) (@225l 2)glL I £SKITMy, where the sum ovey is over the operfragmentationchan-
nels only. Functiong; andg; are determined by the asymp-
totic behavior ofVE(R). For a collision between two neu-
éral atoms, they are given explicitly by

whereL=L+I, andK=L+S. ThusL represents the total
orbital angular momentum, arid represents the total angu-
lar momentum excluding nuclear spin. This coupling schem
will be identified byL £LSKI, or LS coupling for short. An-

1/2
other channel representation is specified by a set of quantum fo.| (R)= E(Z_'““) kiRj (kR), (59)
numbers such as i fi | mk; j
(1111311 ) a( @5l 2S,3515)gdIKITM 12w\
1b1ogdil)alasl25J512)8 T gkj'j(R)zg(ﬂ-_kj) k]-Ry|j(ij), (5b)

where J=J;+J,, K=J+I, and T=K+1. This coupling

scheme will be identified by;J,JKI, or JJ coupling for ~ wherej, andy, are the spherical Bessel functiof4], and

short. we have chosen the normalization constants such that the
The total wave function for the collision complex having wave function defined by Ed4) is normalized per unit en-

definite T and Mt can be expanded in terms of adiabatic ergy. The collision cross sections and other physical observ-

channel functions as ables can be extracted fromj(iT)(E) in a pretty standard
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fashion(see Appendix B We note that unles¥"'=0, the  where the angle® and ¢ specify the direction of the mo-
physical K matrix has to be defined in the fragmentationlecular axisR=R,—Rg in a space-fixed frame, which by
(FF coupled channels. definition always points from the nucle® to the nucleus
A.
A. The case 0fZ,+Zg The symmetry properties of the quasimolecular states de-

ined by Eq.(8) can be derived from their corresponding

The adiabatic Born-Oppenheimer states and potentials a’iﬁ/o atom states. It can be shown that the two-atom states
defined as the eigenfunctions and eigenvaluesigh at a  p5ve the following symmetry properti¢48]:

fixed interatomic separatioR: A A
a'e|(a1Llsl)A(a2L282)BLML(R)SMS(R)>
=P1Po(— 1) M(a1L1S)) Al sl 1Sl
~M_(R)SMs(R)), (10)

HeolML(R)SMg(R)T;R)
=&, sr(RIML(R)ISMg(RIT;R), ()

where the magnetic quantum numbéts and M g are both - - -
quantized along the molecular afs= R,— Rg . These adia- Prl(a1L1S))a(@2L5S;)sLM (R)SMs(R))
batic states correspond one to ditlee Wigner-Witmer rule P, Py(— 1)L SFMUEMsgiMLt Mg

[45,46) to the properly antisymmetrized two-atom states de- 12

fined by[16] X|(a1L;Sp) (@2l ,Sp)sl ~ML(R)S—M(R)),
|(1L1S1)a(@2L2S)5L M SMs) 1D
(N;+N,)! whereo refers to the reflection of electronic coordinates in
= TNGIN, MEM " (LM 1,L,M5|LM ) a plane containing the molecule axis, aRg refers to the
LTSS total parity operation which inverts both the electronic and
X{SM 1M 5| SMg)| 1L 1M 1S Mg1)a the nuclear coordinate®?; and P, are the parities oL.S
manifolds (@;L,S;) and (asL,S,), respectivelyf49]. In ar-
X|azl oMM s2)e (7 riving at Eq.(11), we have used

whereN, andN, are numbers of electrons corresponding to —iM' 7 J+Mm’
states |a;L4M 1S Mg;) and |a,L,M | ,S,Mg,), respec- Dy (7+ ¢ 7= 0.0)=e =1 Dy (4, 0(01)2)
tively. A is an antisymmetrization operator that operates on
all electrons. For the sake of simplified notation, the normal-  Since molecular interactions cannot break these symme-
ization constant and the operatdrwill be dropped in fur-  tries[50], the quasimolecular states defined by EB), and
ther references to the two-atom stafég]. the corresponding Born-Oppenheimer states from which they
This one-to-one correspondence implies that there exisire constructed, must also have the same symmetry, i.e.,
guasimolecular states . .
s ] M RISMAR) R oel(a1L1S))a( @2l 2S,)gL M (R)SMg(R);R)
a a Have
|( 1L1S) (a2l 2S;)e L(R) s(R);R) :P1P2(_1)L7ML|(alLlsl)A(azLZSZ)BL
which are linear combinations of Born-Oppenheimer states,

that satisfy ~M_(R)SMs(R);R), (13

Pr|(@1L1S)a( @51 ,S:)sL M (R)SMs(R);R)

— P1P2(_ 1)L+S+ML+MSe7i(ML+MS)qT

[(a1L1S1)a( @zl 2S;)gLM L(é)s Ms(é);m

R

— [(a1L1S) a(@sL2S) LM (R)SMg(R)).  (8) X|(a1L1S1)a( @2l 2S;)sL

Here the state —ML(R)S—Mg(R);R). (14

|(a1LlSl)A(a2LZSZ)BLML(é)SMS(Ii» Specifically,_Eq.(lI_%) implies that a quas_imolecular state
with M| =0 is an eigenstate af, with an eigenvalue

is a two-atom state as defined by Ed@) except that it is
guantized along the molecular axis. They are related to each ge=P.Py(— 1) (15
other through the relationship

Other symmetry properties of the quasimolecular states to be

|(a1L1S1) Al @2l 2S,) gL M (R)SMg(R)) discussed later are all derived this wée., from their cor-
responding two-atom stabes
2 D ¢ 0 O)D w.(¢,6,0) The quasimolecular state defined by E).is generally a
MM Ms linear combination of Born-Oppenheimer states having the

L sameM |, S, andMg, and the symmetry properties as speci-
X[(a1L1S))a(@oL5S;)gL M| SM), (9 fied by Egs.(13) and (14). If there is only one such Born-
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OppenheimekBO) state, then the two have to be eqap  asymptotic forms OEMLSF(R) with the asymptotic potentials
to a global phase factprif there is more than one BO state calculated using the two-atom stafds].

satisfying the same criteria, further disentanglement can be We are now in the position to derive the fragmentation
achieved by comparing additional symmetry properties, if(FF coupled channel functions defined by the desired
there are any(see, e.g., Sec. Il B or by comparing the asymptotic behavior:

TM1Pt
D 1L 1813111F ) (sl sSoTol oF ) gFl MIMEZ;VIle (F1M1,F,Mo[FME)
X(FM,:,|m||TMT>|a1L151J1|1F1M1>A|a2L282J2|2F2M2>BY|m|(0,q§), (16)

which diagonalizes both the asymptotic spin-orbital and the asymptotic hyperfine interactions, and in which all magnetic
guantum numbers are quantized along a space-fixed axis. The task is to find a proper superposition of the quasimolecular
states, which are linear combinations of the adiabatic Born-Oppenheimer states, such that the desired asymptotic behavior is
satisfied for all orientations. From Eq4,)—(9), one can show that this proper superposition is given by

TMPy — 1/2 112
(D(al'-llel'1F1)A(02L25232|2F2)BF|_[Jl'JZ’Fl'FZ] |_SEJ| z%r:n [L.SJ.1]

X(LM{[,SMglIM)}(IM;,IM[FiMe)(FMg,Im[TM)
L, L, LY (35 Jp J

X181 S Syl 2 1Dy (6,6.0)Yin(0.6)
Jy 3, J F. F» F
X |(a1L1S1) a(@2L 2S2)sLM{ (R)SML(R);R)| (1) a(12)6IM ). (17)

Not only does this channel function have the desired a- With channel functions given in terms of the quasimo-
symptotic behavior characterized by Hd6), but one can lecular states, we can now express the potewﬁﬁ(R) that
also show from Eqs(12) and(14) that it is an eigenstate of enters the close-coupling equatié®) in terms of the adia-

the total parity operator with an eigenvalue batic Born-Oppenheimer potentials. Some calculations lead
Pr=P,P,(—1)'. 1y
|
TiMyiPr; TiMTjPTj
<(D(D‘1Llsl‘31i|lFli)A(O‘ZLZSZJZil2F2i)BFi|i|HBO|q)(all-lsl‘]ljI1F1j)A(a2L232J2j|2F2j)BFj|j>

=on, 5MTiMTJ5PTiPTJ-(_1)Fi7Fj[Jli a2, F 1 Foi Fili 1,325 Faj Fop 1172

i K g [l K
xZ 2 (—1)Jj_Ji[L-S'K’I’Ji’Jj][| ][II ]]

M Mg LSKI3, Fi T F; T,

L, L, L L, L, L Ji Jo I Jij Iy I
x1s S, syds s, sbduy 1, 1l 0,
Jii Jai Ji) Udyy Jgp Jj) UFu Fa Fi) LRy Fy Fy

TP

My Ms —M_ —Msg

J, I K
M +Mg 0 —M_ —Msg

s) Em sr(R), (19
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where 5pTiij implies|; —1j=even[cf. Eq. (18)].
If both atoms have zero nuclear spin, ilg.=1,=0, Eq.(19) reduces to

L, L, LY (L L, L
_(—1)Ja—JJ[Jli,JZi,Ji,|i,Jlj,sz,Jj,lj]”ZM%LS[L,SJ S, S, Si{S S S

BO__
Vij 5TiTj 5MTiMTj5PTiPTj

-e Ji o Ji) Udqy Iy
LS ] )(L S 3 ) iy T
M, Ms —M, ~Mo/IM, Mg —M, ~Mg/|M_+Mg 0 —M, —Msq
Y T,
M, +Ms O _ML_MS) m sr(R), (20

which agrees with the result of Zygelmanal.[18,19,51.
To determine the potentials associated withandHy;, one should, in principle, calculate the matrix elements of these

interactions with the fragmentation channel functions given by(Ef. At large R, they both become diagonalized and are
given by

R—

Vi +ViT — (AE[+AE) 8, (22)

whereAEif is the sum of fine-structure splitting for the two colliding atoms, ma“f is the total hyperfine splitting. For
simplicity, we will use this asymptotic potential for &H.

The close-coupling equatidi3) can now be solved subject to the physical boundary condition of4tgThe S matrix, the
scattering amplitude, and the differential cross sections are derived in the standard faskidppendix Band are given by

STE)=[1+iKTE)[I-iKTE)]?, (22
wherel represents a unit matrix, and
f((@1L1S131iF1iM 1) a( @2l 25551 F 2iM o) gKi— (@1L1S131jF 1jM 1)) a( @2l 2S,35F 5jM 5)) gK;)

27i

_ di—liv: (L " (T) _

= Y k)Y ki FiMyi,FoiMy |F-MeiF Mg, Iimi [ TM[S'Y(E) =17
|im|i|jm|j (kikj)l72 Iim”( |) Ijmlj( ])FiMFiFjMFjTMT< 1jVIj 2j 2]| i FJ>< JVIE) o1 |J| T>[ ( ) ]JI
X(F1iM i, FaiMai|FiMg ) (FiMg; ,1im; [ TM1), (23

do ki
m((alLlleliFliM1i)A(CV2|—252\]2iF2iM2i)Bki—’(al'—151~]1jFlelj)A(a’szsszszjsz)Bkj):k_f|f('—>1)|2, (24)
I

wheref(i—j) is a short-hand notation for the amplitude given by EzR).

B. The case of similar(Z,=Zp) atoms where |, refers to the inversion of electronic coordinates

with distinguishable nuclei with respect to the center of the molecule. Two distinctive

An example of this case would be the collision between £25€s need to be addressed separately here.
8Rb atom and &’Rb atom.

As long asZ,=Zg, the Born-Oppenheimer states defined
by Eg.(6) have inversion symmetry with respect to the cen-  The situation is this case does not differ very much from
ter of the molecule, provided that nonadiabatic couplings aréhe case oZ,# Zg discussed in the previous section, since
ignored [52]. On the other hand, the quasimolecular statethe quasimolecular states of E@) already have the proper
defined by Eq(8) may or may not have this symmetry. From inversion symmetry. From Edq25), we have
its corresponding two-atom state, one can show that the

1. a2L252= alL 181

quasimolecular state behaves under inversiofasg lel(a1L1S1)a(@1L1S))sLM(R)SMg(R);R)
1o (a1L1S) a( @2L2S,) gL M (R)SMg(R);R) =W, gl(@1L1S1)a(@1L1S)) LM (R)SMg(R);R) (26)
:Plpz(_1)N1N2+L1+L2—L+Sl+82—8|(a2LZSZ)A with

X (a1L1S)gLM(R)SMg(R):R), (25 Wis=(—1)4"S, 27
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Thus the potential is again given by HG9) except that we |(alLlsl)A(a2L252)BLML(li)SMS(IER);R>
can add one more quantum number to the notation by replac-
ing Em st by SMLS\M_SF . Everything else remains unchanged.

no longer has the proper inversion symmetry. However, its

2. a3l 2S;# LS, relationship with BO states of the proper symmetry is rather
The situation becomes much different here since theimple. From Eq{(25), one can choose a phase convention
guasimolecular state, such that
|
- - 1 - . . -
[(@1L1S1) a(@2L2S;)gLM | (R)SMg(R);R) = EHML(R)SMS(R)QF;R)"‘|ML(R)SMS(R)UF;R>]7 (283
|(a2LZSZ)A(alLlsl)BLML(é)SMS(é);R>
1 A A ~ A
= PlPZ(—1)N1N2+L1+L2‘L+31+52‘SE[|ML(R)SMS(R)gF;R)—|M,_(R)SMS(R)UF;R>], (28b)

where the symbolg andu refer to gerade and ungerade states, respectively. A more important difference introduced by the
similarity of the atoms is that there are now additional channels described by channel functions:

TM{PT
(gL 283051 1F o) A1 L1111 5F 1) gFI

:[le\]zaFl:Fz]l/ZL;” &4 [L!S!Jvl]l/2<LMl,_ ’SM,S|‘]M3><‘]MJ !lM ||FiMF><FMF !|m||TMT>

L, Ly LY(Jd, 3 J

X1S St Spili 2 LDy (6,60.0)Yin(0.6)
J, J; J F, F; F
X|(a2L282)A(0‘1L181)BLMIi(li)SM,S(Ii);R>|(|1)A(|2)BIMI>1 (29

which corresponds to interchanging the electronic states of the two atoms (h7#EdThese two sets of channels are coupled,
and it is this coupling that gives rise to the resonance exchange.
The complete potentia\l/i'?O is now given in terms of the BO potentials by the following set of equations:

<(I)TiMTiPTi |HBO|<DT1MT1PT1 )
(a1L1S131i11F11) A @2l 2523511 2F 2) gFil; (a1L18131511F 1) Aol 2S00 5F 2)) gF

= 5TiTj5MT,MTJ_(—1)F‘_Fj[31i o FainFai Fioli da, 325, F 1, Faj  Fj alj]lle " LESIKJJ (=1 7IL,S1,K,3:,3)]
i LVIS! (hd}

L, L, L Jii Joi I L, L, L Jii Jo  J
Ii K \]i Ij K Jj 1 2 1i 2i i 1 2 1j 2j j
X S S, S PR PO SS S, S PR PR

L FoT R T
b SRR U PR PN Fi Fo F Jij o i Fij Fa Fj

X
M, Mg —M_ —Mg/\M| Mg —M —Mg/\M +Mg 0 —M_ —Mg
i K |1
M +Ms 0 —M_—Mg E(SMLSM39F+5MLSMSuF), (304
TiM1iPr; TM1iP
{ (QZLZSZJZi|1F2i)A(“1L15131i|2F1i)BFi|i|HBO|CD(chszjszlej|1F1j)A(a1L15132j|2sz)BFj|j>

:5TiTJ5MT,MTj(—1)Fi‘FJ’[J1i ,J2i,|:1i,|:2i,|:i,|i,Jlj,sz,Flj,sz,Fj,lj]“zM MLZSIKJJ (=1)7I[L,S1,K, 3,31
i LVIS! (M}
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L, L, L Joi  Jii I L, Ly L Joi  Jq; I
Ii K Ji Ij K Jj 2 1 2i 1i i 2 1 2j 1j j
S, § S PR PR S, S S [P P

X
LR TR,
Joi Jui Ji) LFa Fo Fi) Uy Jyy J5) \Fy Fy Fy
L S J L S 3 Ji I K
X
ML MS _ML_MS ML MS _ML_MS ML+MS 0 _ML_MS
y oo K
M +Ms 0 —M, —Ms §(5MLSMSgF+5MLSMSuF), (30b)
TiM1iPTi TiM;P1j
<q)("‘l|-lsl‘]liIlFli)A(“2L252‘]2i|2F2i)BFi|i|HBO|(D(a2L232J2j|1F2j)A(‘l’lLlSlJleZF1j)BFj|j>
= (P "MTiPT] TiMriPri
<(D(a2|-232‘]2j|1F2j)A(“1|—lsl‘]lj|2Flj)BFj|j|HBO|(D(alLlleli|lFli)A(azLZSZJZiI2F2i)BFi|i>
=on, 5MT‘MT]_P1P2(_1)Fi7Fj+N1N2[‘J1i Jai FainFai Fioli 1) ), F oy Fop  Fy L1 H2
L L, L Ji o Ji
|i K Ji |j K Jj 1 2 1i 2i i
X > (—1)% 279, S 1,K,3;,3;] SS S, Sp{ly 1, |
M| MSLSIKgJ; I F T Fp T,
i Jai Ji Fii Fa Fi
L L L Joi Jii Ji
P2 S W S 3 L s 3
x{S S, Sty 1, |
M, Ms —M_ —Mg/\M_ Ms —M_—Mg
Iy Iy 3) LFy Fy F
3 K 3y SR : i
X =5 - . C
M +Ms 0 M ~Mg/|M_+Mg 0 —M_—Mg 2 Emsmsar™ Eusmur) (309

Note that the coupling which gives rise to the resonance excH&gé300)] is determined by the energy differences between

the gerade and the ungerade states.
The notations for the scattering amplitude and the cross section need to be changed from thos€2i®) Bnd(24) to

f(((aL9)1i1iF 1iM 1) a((@L S) 2 J5iF 2iM )i — ((aL S)1jJ1jF 1jM 1)) a((@L S) ;32 F 2jM 26K ),

do
m(((aLS)li‘JliFliMli)A((aLS)ZiJZiFZiM2i)Bki_>((aLS)llejFle1j)A((a'LS)Zj‘JZJFZJMZj)Bkj)r

to account for the possibility of resonance exchange. HeteSj can either bay;L1S; or «,L,S,.

C. The case of identical nuclei From this equation and E¢12), it is straightforward to

The new element in this case is that the total wave funcShow that the channel function defined by Etj7) behaves

tion must have proper symmetry under the exchange of nu@S

clei. From the corresponding two-atom state and @), S TMiPr
one can show that the quasimolecular state defined by8Eq. an)(alLlSlJll1F1)A(a2L282J2I1F2)BFI(R)
behaves ap47,48 (1) NNz Py F
X (@111 S L,S,)sLM_(R)SMg(R);R
n|(C¥1 1S alasl2S:)p L(R) s(R) > X(DTMTPT )BFI(R) (32

(gl 283051 1F o) al@gL1$13111F,

(—1)NiNz+Li+Lo-L+81+8,-S

X|(a2L282)A(a'lLlsl)BLML(_é)SMS(_é);R> (keeping in mind that identical nuclei implies, of course,

=(_1)N1N2+L1+L2+Sl+82+ML+M5e*i(M|_+MS)7T property'
X |(a,l aiL1S)sL—M_ (R)S—Mg(R):R X TMTPT
|(azL2S;) (@1l 1S1)e L(R) s(R);R) Xn®@ o [ 1813111F 1ol 1S,3gl 1 5 FICR)

(31

=(—1)%1p; 17T (R), (33

under the exchange of nuclei, an operation denoteX hy {a1L1819111F 1, @2l 280511 F o} F

I,=14). Thus a channel function with the desired symmetry
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can be written in terms of channel functions given by Eq. CFF:{2[1+ 5(a2L282J2I1F2,a1L181J1I1F1)]}‘1’2.
(17) as

VP Equation(34) implies that if
T (R)
teataSlaF azt2S202a Pl (azL2S:d511F2) = (1L 1S13111F4)

:CFF[ TM1Pt (R) i i i .
(11151311 1F 1) alazL 28,3511 F2)gFl (implying, of courseN;=N,), only states satisfyin
plying 1= Nz y g
(= 1)NiNz+ 21y Pyt Py F E41—even (35
TMPT . .
(asLpS3ol1Fo)a(arlsSydsl Fpgrt (O] (34 are possibl¢53], regardless of whether the nuclei are bosons
or fermions.
in which CFF is a normalization constant given by The potential\/ﬁo is given in this case by
( TiM1iPT; |Hgo|® @ NiMTiPTi )
{a1L1S131il 1F1j v aal2Spd5i1 1F i Fyl;! "BO {01'-15131; 1F1j a2l 2S00l F 3 Fj
_ »~FF~FF TiMTiPTi @ "iMTiPTi
=2G; C [<CD (a1L1S131i1 1F 1) Al @2l 252211 1F i) gFil | BO| (1L1S131j11F 1) alaal2S35)1 1 F2))gF|l; )

T{M;P1] )]
az'—zsszj 1F2j)alarbyS1dgjlaFa))gFyl/

(36)
where the matrix elements on the right-hand side are given by(#y.for (a;L.S;) # (a5L,S,), and by Eq.(19) for

(@1L1S1) = (a3l 2S,).
The differential cross section in the center-of-mass frame is give(sdxy Appendix B

) ) _F. TiM1iPT;
+(_1)N1N2+2|1+|J+F1]+F21 FJ<(I) iMTiFTi

CD
(a1|-15131i'1F1i)A<az'-25232i|1F2i)BFi'i| ol

g
m[{(aLS)liJliFliMli (@l S)5id5iF 2iMoitki—{(aL 9)1jd1jF1jMyj ,(aL ) 2jd5iF 2jM 5 1K;]

k | FF|2
=g, [CrF =Tk (- )M 2t (i, — k) 2 (37
|
wheref(i—j,k;) is a short-hand notation for the full expres- D. LS coupling
sion
In previous sections, we have established the proper iden-
f({(al9)1id1iF1iMyi,(aLS)5 5 F 2iM itk tification of fragmentation channels and the close-coupling
—{(aLS)1jJ1jF1jMyj,(aL S),jJ5 F2Myiik)), equations to be solved for different types of collisions. The

rest of this paper deals basically with the question of how to
solve these equations effectively.
The potentials given by Eq§l9), (30), and(36) are com-

o o plicated because the fragmentation channel functions do not

E( —kj)= m(ki) reflect the symmetry dflizgg. A much simpler representation

of VBO can be obtained in th&S coupled condensation

(in the center-of-mass framés generally applicable to col- channelgd43], which are defined, in the case of distinguish-
lisions between atoms with identical nuclei, which may be inable nuclei, by the asymptotic behavior
different states or carry different charge.

which is related to thes matrix by Eq.(23). Equation(37)
implies that

R—x
TMP
q)(al[l;l'1)A(0‘2'—252|2)B'-|£SK| - <L1M L11|—2|VI L2| LM L><LM L ,Im| |£M L‘><81M81 vSZM SZ|SMS><£M£ 1SMS| KM K>

all m
X(KMg ,IM{|TM )| 1L 1M 1S M 1) a a5l aM 2S5, M 52)8Y 1, (6, ) (1) a1 2)8IM ),
(38)

where all the magnetic quantum numbers are quantized along a space-fixed axis. A channel function with such an asymptotic
behavior can be written in terms of the quasimolecular states defined b)Eap
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T ,MP
D T ) (el aSol LI £SKI a;m (LM, Im|ZM (LM ;,SMg|KM )

X(KM, IMITMDD Y 1 (6,0.0D 3 406,00 Yim (0,6 (asL1 S @2l oS )e
XLM{(R)SM(R):R)|(11)all2)sIM)). (39

The potentialV®® becomes much simplified in this coupling scheme and is given by

( TaM14PTa |Hgo|® @ '8MTsPTs )
(@1L1811)A(@2L 2591 2)BL ol L0 SuK ol o BONT (@gL1S1l1)pl@al oS0l 2)gL gl gL sSeK gl g

1/2 Lo o Ly La |B L
= 01,7, OM1gM 1, 0P sPr, OL L Or e, Os,s Ok gk O 1 Ll 6] MEL M, 0 M JIM, 0 —M, Ems,L,(R),
(40)
which is block diagonal in all quantum numbers excepthis potential is consistent with ER2) of Ref.[19].

In the case of similar atomZ(,= Zg) with distinguishable nuclei andoLS;) # (a,L,S,), there are additional channels
characterized by

T,MP
DT L iSulyaLl£SKI }m(LML,IdeML)(EMC SMg KM )(KMy,IM || TM7)D, (@ 6,0D (4,00

XYIaml(9r¢)|(a’2|—2$2)A(0‘1L181)BLML(&)SM’S(é);RH(I Dall2)sIMy), (41

which is a result of interchanging the electronic states in(B§).. With the help of Eq(28), we obtain the potential’gg:

( TaM1aPTa |H | TMTBPT )
(@111 D A(@2L 2951 2L ol 4 LaSuK ol o' BOIE (a1L18111) p(aalpS)l )l gl gL sSeK gl

= (@ MTePTa |Hgo| @AM T8 T8 )
(@2L2S21 DA(@1L1S112)L ol aLaSaKal o) BOIT (a2lpSplp)al sl 1S112)pL 4l gLSeK gl

la ‘Ca
:5TBTa5MTBMTa5PTBPT oL P 5LBL 5353 5K K, Ol g Jlailg] /22 (ML 0 _ML)
L, lg L,
M, 0 —M_

X

1
) 5lms,o1, (R +Em su (R, (428

( TeM1oPra |Hgo|® @ '8MTPTs )
(1L 18111 A(@2L 255125l ol LSk ol o (aglySyl 1) p(a1L1S112)pl gl gLaSEK gl 5

= 5TBTQ5MTIBMTD(5 PTa5L5La5cﬁ£a5sﬁsa5l<5|<a5|Bl P1P2

PTﬁ

Lo 1o Lo \[Le lg L
X(_1)N1N2+L1+L2*LB+51+52*S,3[|a,|B]1/ZE M 0 M M 0 M
ML L L L L

1
X5[Em s 00, (R) = Em s u, (R]. (42b)

In the case of identical nuclei, the channel functions musiThus a channel function with proper symmetry under the
have a proper symmetry under the exchange of nuclei. Froraxchange of nuclei is given by
Egs.(12) and(31), we have

TM{Pt
{alLlslll,a2L282I1}LI£SKI(R)
TMPt AL TMPt
(alLlsll1)A(a2LZSZI1)BLIESKI(R) =C S[ (alLlsll1)A(a2L252I1)BLIL‘SKI(R)
:(_l)N1N2+Ll+L27L+Sl+827$+2I17I+I +(_1)N1N2+L1+L2—L+81+SZ—S—I+I
MY (43 x P MTPT (R)], (49

(aZLZSZIl)A(alLlslll)BLMSKl( R). (@sLSol 1) A(@1L1Sy11)gLI LSKI
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which satisfies Equation(44) implies that if
TM{P =
0P 811ty cskilR) (a2l 2Sp) = (e1l1Sy)
_ ol. x TM1P (implying, of courseN;=N,), only states satisfying
=(=1) 1q){a1[1;1I1,a2L232I1}LI£SKI(R)' (45
L+S+I1+I1=even (46)
The constantC'S is a normalization constant: _ -
are possibl¢53]. The same condition holds whether the nu-
CUS={2[1+ 8(a,L,S,,a,L,S)) ]} Y2 clei are fermions or bosons. The potentg]g is now
|
TaMTaPTa TﬁMTﬁPTﬁ
<q){a1L181I1,a2L282I1}LLyIaL‘LySaKaIa|HBOlq){alLlsll1,a2L252I1}LBIBL'BSBKBIB>
_ LSALS T M1,P14 TsMT 4P
=2C.Cy [<q)(041L131|T1)A(“2L252|1)3La|a£ SQKQ'JHBOM) LS )

(a1L1Si11) (a2l 2ol gL gl 4L SR gl

4 (—1)NaN2tLy Lo Lyt Sy+Sp—Spm |B+|E<(I)TaMTaPTa

X [Hgo| @ EYTE T8

(agl1S] l)A(QZLZSZI l)BLaI aﬁaSaKal a

(oL 2ol ) Al L1 Sy 1)BLBIﬂLBSBKBIB>]’ (47)

with the matrix elements on the right-hand side given by Eq.

(42 if  (arl,S))# (a1L1Sy)
(@sL2S) =(a1L1Sy).

and by Eq. (40 if

It is clear that the representation WP© is much simpler
in the LS coupling than in thé&=F coupling. The catch is, of
course, thaH; and H,; are no longer diagonal. The more
serious problem is that since the channel couplings due @, the sake of simplified notatioty

H; andH,; do not vanish at larg®, the physicaK matrix
cannot be defined in thieS coupling unles$d; andH; are

strictly zero. This is where frame transformation and MQDT

come into play.

E. Frame transformations and MQDT

It can be shown(see Appendix Athat theFF coupled
channel functiongEq. (17)] are related to thé.S coupled
channel function$Eg. (39)] by a frame transformation

TM{Pr_ (T) 4, TMP
(Dj TT_% Ujﬁ(bﬁ TPTI(R), (48)
where
U§p= 5|i|5(_1)Fi+£B+SB+KB+IB
X[‘]lilFli1‘]2i1F2ivFivLﬁaﬁﬁasﬁ;Kﬁ,llB]llz
XE(_l)JX[JX][s L, Coll1, B T
Ix s Lp Lplllp Fi
Li Ly Lg) [Jy Jda I
X{S1 S S (ET PR (493

Ji Jai Iy Fi Fa F

From Eqgs.(34) and (44), it is clear that in the case of iden-

Uiflia=(CIT/IC) Ui
={1+ 8(asL5Sy a1L1S)

X[1=8(3F 2 JuiF) Y200 . (49D

{05 will also be de-
noted bin(;), with the understanding that the proper trans-
formation is to be used for different cases. We emphasize
that the normalization factor in E¢49b) is important. The
transformation would not be unitary without it.

The goal of this section is to present a simple method
which gives complete information about a hyperfine collision
from either the existing. S coupled calculationg34,8,23 or
a JJ coupled calculation discussed in Appendix A. It is an
approximate method that combines the use of frame transfor-
mation and MQDT. The concept of this method is well
known, and has been very successful in interpreting the spin-
orbital effects on photoionizatiof29-33. It leads in our
case to a multichannel effective range theory which is the
same as the one developed previously for electron-atom scat-
tering [54]. | will first present the method. The underlying
assumptions and future refinements will then be discussed.

Briefly summarizing the method, we first solve the close-
coupling equations in theS coupled(condensationchan-
nels ignoring both the spin-orbital and the hyperfine interac-
tions, or in theJJ coupled channels ignoring only the
hyperfine interactions. An energy-insensitive short-rakge
matrix (K35 in LS coupling; K9" in JJ coupling is ex-
tracted from this set of solutions, from which the energy-
insensitive short-rangk matrix in the fragmentation chan-
nels, K}V, is obtained through a frame transformation.
MQDT is then applied to give the physickl matrix K" in
terms ofK{(" .

Specifically, K3 is defined by the larg® expansion of

tical nuclei, the properly symmetrized channel functions argehe wave function inLS coupled condensation channels as

related by the frame transformation

follows:
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(—1)' is anN.x N, diagonal matrix with elements—1)"i.
W;MTPT:%: @, T(R) (F28,5~ 90K /R, (50 KM, KIM, KAD | andKD, are submatrices ok°™
corresponding to open-open, open-close, close-open, and
Herefg and gg are a pair of linearly independent solutions close-close channels, respectively. It should be remembered
corresponding to the asymptotic potential in a condensatiothat thek°(™ matrix referred to here is the one in fragmen-
channele. They differ from the usudl, ,g, pair in that they tation channels. It is related to the one in condensation chan-
are required to have energy-independent normalization at theels by Eq.(53).
origin. If the interaction in a condensation channel can be |f all channels are closed, the physical boundary condi-

treated as a short-range interactibhandg?, are specifically  tions can only be satisfied at discrete energy levels deter-

a pair of analytic functions of energgee Appendix € mined by
9(e)= --Ri (KR (513
6 == L
al € Ela; h (Kq def(— 1)+ &'+ VKO 1 +12) = (55)
9%(e) =K< 'Ry, (k,R), (51by o o
which gives the relationship between bound state energy lev-
where els and the scattering matrix.
Specializing to the case of collision between alkali-metal
e,=E—-E,, atoms in their ground states, E¢49), (53), and(54) enable
one to generate complete information about the collision
Ko=(2me,) "t from single channel calculations such as thos¢34f8,23.

Numerical results of this sort will be presented later.

Note that the expansion E450) with an R-independent If the spin-orbit interaction is significant, t€)}, matrix

KOT at largeR is possible only when the spin-orbital and the . oT ;
hyperfine interactions are ignordthis is why the physical in Eq. (53) should be replaced b, calculated by solving

K matrix cannot be defined ibhS coupling unless there are the close-coupling equations in tid couplm(gT)schemésee
no such interactions Appendix A), and the frame transformatids;;’ is replaced

The energy-insensitivie)(" is defined in a similar fash- bY U given by Egs(A6) and (A15).

ion by a largeR expansion of the wave function in fragmen- ~ The theory presented in this section is, of course, only an
tation channels: approximation with a certain range of validity. It relies on
Eq. (53), which is strictly valid only when there are no spin-
orbit and hyperfine interactions. The corresponding transfor-
mation fromJJ coupling requires the hyperfine interactions
to be zero. However, they are useful approximations even in
After solving fork %) in the condensation channet6?™ is  the presence of such interactions. First, it is obviously a good
obtained by using the frame transformation E4Q): method to account for the hyperfine effects at energies much
greater than the hyperfine splitting. This covers a wide en-
ergy range that is of great importance in many applications
[2]. Second, the degree to which these approximations fail is
a direct measure of the effects of long-range interactions.
The wave functions satisfying the proper physical boundaryrhis is because E¢53) is always going to be valid inside an
conditions are then constructed as linear superpositions ¢ Where theLS coupled (J coupled potential is much
solutions specified by Eq52). This is a standard procedure greater than the spin-orbitghyperfing interactions. Thus

in MQDT [26,28, and lead in our case to the multichannel-the frame transformation method presented in this section
effective-range equatiofb4], which relates the physic{ basically assumes that aftBy, the electrostatic and the ex-

lp]TMTPT:Ei o MTPT(R) (125, —gPKINIR. (52

KOT E U(T KOTU(T) (53)

matrix to K%T; change interactions are sufficiently weak or that they drop
off so quickly that their effects can be ignored. Third, it can

K<T)(E)=k'*l’z{Kgg)—Kgg)K'H/Z be systematically improved upon. Specifically, the effect of
long-range interactions in the outside region where the hy-

X[(= 1)+ kMR ! 127 perfine interaction is dominant can be incorporated by a

proper choice of thé® andg® pair. For a 1¢® potential, the
proper pair can be obtained either by the usual perturbation
theory or by a method of Cavagnefb5]. Any error after
such a correction reflects the evolution of the wave function
» with N, being the number of open channels at en-yhrough the intermediate region where the electrostatic and
gy P '*12is anN x N, diagonal matrix with elements the exchange interaction is comparable to the hyperfine in-
i 77, with N. being the number of closed channels atteractions. This region can be treated by solving the close-
energyE, and coupling equation in th&F coupled channels, if needed. It
will be interesting to identify the significance of this contri-
ki=[2u(E;—E)]Y¥h. bution, especially its energy dependence.

X K|+1/2Kggr)}kl+l/2. (54)

Here k' 2 is an N,x N, diagonal matrix with elements
I +1/2
Kli

ergyE.



54 THEORY OF SLOW-ATOM COLLISIONS 2033

lll. DISCUSSIONS block diagonalized in certain regions of the configuration
space. For example, theS coupling block-diagonalizes the
Born-Oppenheimer part of the potential. The spin-orbit and

It is well recognized and understood that cold-atom colli-hyperfine interactions are not diagonalized. Specifically, if
sions are very sensitive to the potenfi&l7,8. We give here e take this part of the interaction to be that of two separate
a brief discussion of some issues of interest in our preseritoms, their matrix elements are given by
work.

The total phase shift of a collision comprises contribu-
tions from both short-range and long-range interactions. We
will assume that the asymptotic potentials are known pre-
cisely and look at the dependence of the short-range phase
on the potential. VZ'};:E ula EPfUi(p, (58)

For atom-atom collisions, the short-range phase can be i
estimated by the integral of

A. Sensitivity to the potential

VLB=§ UDAE[ULY (57)

whereAE; is the total fine-structure splitting for the two

atoms in aJJ coupled channek (see Appendix A U{" is

the LS to JJ frame transformation given by Eq6A4) and

(A14). AEM is the total hyperfine splitting for the two atoms
|AK|= (w202 YE-V(R)] AV, in a fragmentation channgl andU{!) is theL S to FF frame

transformation given by Eq49). It is obvious that in the

If the distance over which the potential may be in error isregion where the electrostatic and exchange interactions

denoted byd, the condition that the phase is determineddominate, the.S coupled channel functions provide a better

within 7 is roughly|Ak|d< 7. For slow-atom collisions, the basis set for numerical integrati¢f1]. Thus, depending on

corresponding requirement on the uncertainty in potentiathe strength of the spin-orbital interaction, one can separate

k(R)=[(2w)YR][E-V(R)]Y2

the uncertainty of which is related to the uncertaintyity

can be estimated by the space into three or four regions. The outermost region is
2 112 handled by MQDT; the innermost region is integrated in
|AV|<Z(2—> IV ir] V2 (56) LS coupling. The middle region is handled i+ coupling
dl u mn or a combination oflJ and FF coupling. Matching at vari-

ous boundaries is facilitated by the frame transformations.

whereVp,, is the depth or some typical value of the poten-sych a scheme fits especially well with Gordon’s method of
tial. Thus we see that the sensitive dependence of slow-atogp|ving the close-coupling equatiofs6].

collisions is due mainly to the large mass of an atom. Since

atoms are thousands times heavier than electrons and the

distance over which the potential may be incorrect is about a IV. CONCLUSIONS

few times bigger, it follows that the potential has to be about A general theory of slow-atom collisions has been pre-

10" times more accurate if the atom-atom phase shift is to b@ented with special emphasis on the effects of nuclear spin

determined to the same degree of accuracy as the electrogtistics and atomic fine and/or hyperfine structures. It re-

atom scattering. This is why quantities such as the anguladyces to the theory of Stoet al.[20] for collisions between

distribution are so much more difficult to determine for 5jkali-metal atoms in their ground state, and to the theory of

atom-atom collision as opposed to electron-atom collisions.zygelmanet al. [18] if there are no hyperfine interactions
What is unique about cold-atom collisions is that if the and if the nuclei are either distinguishable, or indistinguish-

last bound state happens to be very close to the threshold, thg)e (in which case the atoms must be in the same electronic

error in the short-range phase gets further amplified in thetates. By employing the frame transformation and MQDT

determination of cross sectiofé]. _ ~ techniques, we arrived at an approximate method which
Note that a sensitive dependence on potential also impliegjves complete information about hyperfine collisions from
a sensitive dependence on energy, since much simplerLS coupled orJJ coupled calculations. The

method can be systematically improved upon, and it tells one
where each contribution comes from.

Fortunately, it is easily verified that ignoring hyperfine inter- The next natural step is to compare the results obtained by

action over a range of 10 a.u. does not change the pha§ ving the close-coupling equations in tiig= coupled

significantly, which is actually an assumption that makes the annels a_nd the results obtained by varloysﬁappro(;(lmatlons
approximation in the preceding section useful. discussed in Sec. Il E. Reference pair functibnandg® for

1/r" potentials, especially fon=6 andn=3, also deserve a
closer look.

Getting back to the question of whether®?Rb atom in

We point out here that the method of MQDT and framethe groundr =3 state is distinguishable from%Rb atom in
transformation is useful even when the goal is to solve thehe groundF =2 state, the answer is that it is an ill-posed
FF coupled close-coupling equations numerically. MQDT question that can be deceiving. If the atoms are given one at
provides an elegant and systematic way of imposing the time (implying that their wave functions do not over)ap
physical boundary conditions, and the frame transformationsne can of course tell which one isk=2 and which one is
lead us to basis sets in which the potential is approximatelyn F=3. But that is missing the point of indistinguishability.

|AK|=(u/262)YTE-V(R)] M AE|.

B. MQDT and frame transformation as a numerical tool
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The point is that when the wave functions overlap, we cannotertainR,. Such sophistication may not be necessary at high
tell which one is inF=2. We only know that one of the temperatures, but may be needed for cold collisions due to
atoms is in it and the other one is =3. Thus the system their sensitive dependence on the potential.
of two 8°Rb atoms, one iff =2 and one irF =3, should be
treated as two identical atoms in different component states,
just as the two different spin orientations of an electron. The ACKNOWLEDGMENT
same conclusion is, of course, applicable to any two atoms
with the same constituents and in any states. However, for &
system made up of an ion and an atom of the same speci%
(or ions of the same species but of different chargme
needs to think in terms of nuclear statistics.

Finally, .it seems clear that thg ultimate theory of cold- APPENDIX A: FRAME TRANSFORMATIONS
atom collisions should be @-matrix type of approacf85— AND JJ COUPLING
40] in which short-range interactions are treated by a com-
plete basis set expansion including both the electronic and The frame transformation Eq49) is derived by going
the nuclear degrees of freedom. Close-coupling equationghroughJJ coupled channel functions, which are defined, for
such as the ones presented here, are used only beyonddistinguishable nuclei, by the asymptotic behavior

| would like to thank Professor Anthony F. Starace for
reful reading of the manuscript and for helpful sugges-
ns.

R—o

- (I1M1,3:M5[IMg)(IM, Im [KM )

all m
X(KM,IM{[TMp)|a1L1S191M 1)l @2l 2S,35M2)8 Y i, (6, ) | (1) a(12)8IM 1),

(A1)

where all magnetic quantum numbers are quantized along a space-fixed axis. Fi@n iEgan be shown that th&] coupled
channels functions can be written in terms of the quasimolecular states as

TM{Py

(11151311 1) a(@2L 52351 2)gJIKI

TMPT
(@1L1S13117) Al @l 555351 2) gJIKI

L, L, L
=[31,3,1"2 > [L,SIYALM{,SMgIM})(IM,, I [KM (KM IM[TMr)| S1 Sz S
LS allm
Jy 3, J
XDy s (4:6.0)Y)m (8,8)|(a1L1S1) a2l 2S,)sL M{ (RISMY(R);R) | (1)a(12)gIM1). (A2)
|
This channel function, to be identified by an indgx is TMLP TMoP
related to theL S coupled channel functiongf. Eq. (39)], Ui T(R)=% Ul'®, T (R), (A5)
identified by the indicesB, by the frame transformation
[9.18,19 where
CI)IMTPT(R):% UQ;)CD;MTPT(R), (A3) Ui(;(r):5IiIX5JliJlX5J2iJ2X(_1)|i+Fi+KX+IX
where ><[Fli!FZi!Fi!‘]X!KXvIX]l/2
Joi J
1i 2i X
(M) _ g+t LS . K, J
Uk = 1,1 50K,k 01,0 ,(— 1) B X{II FX 'F(] il 1. (A6)
X[J1ydonsdx L g L g, Sp] Y2 <! Fi Fa Fi
I K. J Ly Lz Lg The LS to FF frame transformation is then obtained
x[ xR X] S, S, Sz;. (A4 through
Sg Lg Lg
Jlx J2x Jx
ulp=> uuly, A7
An FF coupled channel functiofcf. Eq. (17)], identified by 'p 2 e ad

the indexi, is related to théJ coupled channel functions by
a similar frame transformation, which gives Eq(49).
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In cases where spin-orbit interaction is significant, thetween two different atoms or a collision between similar at-
starting point for the frame transformation and MQDT oms with distinguishable nuclei andv{L,S,)=(aL1S;),
method described in Sec. Il E is the solution of close-the potennal\/Bf that enters into the close-coupling equation
coupling equations in thdJ coupling. For a collision be- in JJ coupling is determined by

< TxM1yPrx | B| TMTyPTy >

(1111310 1) Al @2l 282304 2)pdil kKol BOVT (@gL1S11y11) Azl 2205y 12)gdy 1 K 1,
L, L, L
=811 5 Sk k. 011 (=) NI don s du s xd1y I L2 > LSS S S

TXTy MTXMTy PTXPTy KXKy ley Ix1¥Y2xsVx I x Y1y sY2y y y ' 1
M MgLS
Jlx ‘]2x Jx
L; L, L
Jy Iy Ky

L S L S
SN Sl
_ML_MS ML MS _ML_MS

ML+MS 0 _ML_MS

M Mg O —M, M>5MLSF(R) (A8)

In the case of a collision between two similar atoms with distinguishable nuclei asld,$,)# (a1L1S;), there are
additional channels characterized by

TM1P _ 1/2 1/2 ’ ' ’
q)(az-[zgz.]zl1)A(a1L181J1I2)BJIKI_[‘]1"]2] LSJlaum[L’S] <|-MLvSMs|JMJ><JMJ1|ml|KMK><KMK:|M||TMT>
L, Ly L
X1 S S1 S{Dy i (4.0.0Y)m(0.6)|(azl:S)a(@rl1S)e
J, J; J
X LM{ (R)ISMYR);R)|(1)a(12)gIM). (A9)

The complete potential 3y is specified in this case by

( e |Hgo|® @ YMTyPTy )
(@1L1813150 DAl @2l 255340 2)gdu Kyl BOI™ (@1L1S131y11) Al @l 2522y 2)gdy 1 K 1y
Ll L2 L
= 01,1, Oy My 0P Py Ok, O (— D)X W I3, 325 3¢ ko day 1 day  Jy y]lleL%:SLS[L,S] s, s, S
JlX "]ZX Jx
X4S S S J y . ,
M, Mg -M —Mg/ \M| Mg —-M —Mg/ \M|+Mg 0 —M —Mg
le ‘]2y Jy
Jy |y Ky 1 e R e o o
. n ,
M +Ms 0 —M —Mg| 2-MS.at(RIFEu s (R)]
< TxM1xP1x | | T yMTyPTy >
(@l Spdad D al@1L1S131x 2)pdxl Kyl BOI ™ (@l oSy 1) a1 L1S1d1yl2)gdy Ky Iy
= Jixtdoyt Iyt Iy +doy+J TyM1yP1y T M1,y
=(—1) " 2x y T2y y<(I) (a1L1S131y 1)A(a2L25232x|2)BJx|xKx|x|HBO| (a3L1S133y11) a@zl 2S00 15) nyKy|y>

(A10D)
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<(I)T><MT><PT>< |H |(I) MT PT >
(11181334 1) Al @l 2923241 2) gyl Kyl BO (aszsszy Dala1l1S1daylo)gdy I Kyl

— NiNp+Jqy+J 112
= 1,7, O M1, 0P pr Ok, Ot P1P2(— 1)1 2y 27531, 300 0k Lo d1y 1 J2y Jy ]
L L L L L L
. ) Sl Sj . Sl 52 < ( L S J, )( L S J,
X L,
M| MglLS [ ] ' ' ML MS _ML_MS ML MS _ML_MS
Jix Jax Ix ‘]ly ‘J2y JY
I K, i o, K, 1
X = R)— R)]. Al0
M +Mg 0 —M_—Mg/\M +Mg 0 —M, —Msq Z[SMLSagLa( )= &m s, (R)] (A10c)

For a collision between two atoms with identical nuclei, ais a normalization constant.

JJ coupled channel function with proper symmetry under the From Eq.(A11), it is clear that if
exchange of nuclei is

TMP (a2l 2S,d5) = (a1L15,3y),
qD{al[l;lJlll,aszsszl JIIKI (R)

— 3@ TPt
=C (alLllelll)A(azLZSZlel)BJIKI(R)

(= 1)NaN2 I+ =311

only states satisfying

J+1+1=even (A12)
o (R)] (A1)
L2Spd50 D) a@1L1513111)gdIKI ' . . .
(azkoSpll)alert150iln)e are possible. This is true regardless of whether the nuclei are
where fermions or bosons.
. b The potential\/)'?)fJ for the case of identical nuclei is there-
CH={2[1+ 8(asL 25,32, a1L1S,31) ]} fore
< TxM1xP1x | | T MTyPTy >
{e1L1S1314d 1, @2l 285041 2}, K [T T BO {alLlsl‘]lyll’aZLZSZ‘]ZyIZ}‘]nyKny
_ JI~II TxM1yP1x T yMTyPry
2G5 Cy [<(I)(a1L181J1XI1)A(a2L252J2XI Z)BJXIXKXIX|HBO| (@1L1S137y1 1) (@2l 2S5y 2)BJylyKy|y>
1NN+ I3y doy— Iy — Ly + 1y sy TAMTxPTx @ YMTyPTy
+( 1) ey y<(I)(a’ll-lsl‘]lxl1)A(0‘2L282‘]2x|2)B‘]x|>(K>(|x| BO| (CVZLZSZJZy l)A(alLlSl‘]lylZ)B‘]ylyKy|y>:| (AlS)
|
where the matrix elements on the right-hand side are given R
by Eqg. (A10) for (a;L1S;) # (a»L,S,), and by Eq.(A18) Vf(y — AEL&Xy, (A16)
for (a;L1S;) = (a5l ,S;).

The LS to JJ frame transformation for identical nuclei is

whereAEf( is the total fine-structure splitting for the two
atoms. The asymptotic hyperfine interactions are, however,
not diagonalized inJJ coupling. Specifically,

U{X}{,B} (CJJ/CZS)U(T) {1+ 5(0(2L232 alLlSl)

X[1=8(Jp 1) IHHUL
(A14)

The JJ to FF frame transformation for identical nuclei is

vhf = 2 ULAE U, (A17)

Uiy = (CIIICRUL = {14 8( a5l ,S,051 a1 1S1J4)

_ . . /21 (T)
X[1=8(F2i, Fu) 1} *Uic (A15) whereAE! is the total hyperfine splitting for the two atoms

in a fragmentation channél in which the asymptotic hyper-
The JJ coupled channel functions diagonalize the asympine interactions are dlagonahzdd(T) is theJJ to FF frame
totic spin-orbit interactions, i.e., transformation given by Eq$A6) and (A15).
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A question that naturally arises here is why the spin-orbitditions and the related cross section formulas.

interaction is not included in our definition of the adiabatic =~ The wave function having proper scattering boundary
Hamiltonian, which seems to be the reasonable thing to da;onditions is constructed in a standard fashion out of solu-
especially if the spin-orbit interaction is strong. Such ations which define the physicdl matrix. First, a proper
theory can indeed be established. It is not presented hefimear superposition of these functions gives a set of solu-
because of some subtleties associated with nonadiabatic cotiens that defines th& matrix:

pling effects.

By starting from an_S coupled molecular basis, one can TMop. R S

ignore the nonadiabatic coupling if theS coupled molecular g T - @I RSNk R=1j7/2)
potentials have no avoided crossing or if the crossings occur Jeo !

only at small internuclear distances where the atoms are un- elkjR

likely to be. This is the case at least for collisions between + —[ (—1i) ka_llzT(T)(E)ki_llz] ,
alkali-metal atoms in their ground state. The nonadiabatic

couplings due to spin-orbit and hyperfine interactions are left (B1)
to be treated by solving the close-coupling equations in the

proper fragmentation channels. But a similar condition is noWhere

satisfied if one starts from &J coupled molecular basis set. (T (T

To treat the nonadiabatic coupling rigorously in this case, T (E)=(=2mi) [ST(E)—1], (B2)

one needs to carefully take into account the subtle difference . o . . .
between one- and two-center rotations, as pointed out in the which S'(E) is given by Eq.(22) andl is a unit matrix.
important work of Zygelmaret al. [18]. Even though their In terms of this set of solutions, the wave function with a
work may be equivalent to previous theories when nonadiaP OP€’ scattering boundary condition is given by

batic coupling is ignored, it is expected to lead to different

nonadiabatic coupling terms. This issue deserves further ex- = > iliy¥ (k)(Fy My, F5My|FiMg)
amination in the future. FiliTMem !

TMP
APPENDIX B: SCATTERING BOUNDARY CONDITIONS X(FiMe lim| TMp g 7T B3

AND CROSS SECTIONS . . . .
In the case of nonidentical nuclei, the asymptotic form of

Owing to the new features introduced by identical nuclei,i is rather standard and leads to E(&3) and (24).
we give here a brief discussion of scattering boundary con- For identical nuclei, we obtain from Eq&4) and(16)

R—
¥ — CIlaal1S13511F 1iMyi)al asl 58,051 1F M g ) ge'i (Ra~Ra)
+ (=DM g, 580511 F i Moidal gL S350, F 1My )ge'i- (Re~Ra)]
|kR
"‘2 _CFF[f(|—>J K;) |6¥1L151~]11|1F11 1J>A|a2|—282‘]2j 1F2jM 2]>B

+ (= DNN2F2f (i, — k)| ol 2S00 1F 2jM oy al @1 L 113451 1 F 1jM )], (B4)
|
which gives Eq.(37). Note that both terms in the incoming APPENDIX C: PROPERTIES OF f ® AND ¢°
part of this wave function describe tiamephysical state in
which an atom in statéa;L,S;J4i11F1;M4;) is moving in For the sake of completeness, we summarize here proper-

the center-of-mass frame with momentditk;, and an atom ties of f° andg® as defined by Eq(51) for short-range po-
in state |a,L,S,J511F2M5;) is moving in the center-of- tentials. They are used in the derivation of the effective range
mass frame with momentum #k;. The only difference is EQ. (54). Refer to[24,25,28 for more details and for refer-
that we have labeled the two atoms differently, i.e., theyence pair functions defined for other potentials.

have been exchanged. The amplitudé§—j,k;) and £9 i (€) andg (€) are both analytic functions of energy
f(i—],—k;) interfere with each other because they are theg; . ThIS is easily verified through series expansmn;s, @ind
amplitudes for scattering into theamestate in which an vy, [44], from which it is to be observed thaf andg® de-
atom in statda;L1S;J4j11F1;My;) is moving in the center- pend onk only through powers ok?, which is proportional
of-mass frame with momenturkik;, and an atom in state to energy.

|asL2S,5i11F 2My;) is moving in the center-of-mass frame ~ The behavior off® and g° at smallR is characterized
with momentum-—7Kk; . by
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R—0 1 Reso '
() — (2l +1)n RI™, (C1) 9%(e)) — —kl'cogkiR—1;m/2),&>0, (C5)
R—
g?(ei)a—i(zliﬂ)!m*'i. (C2) Row
2|i+1 g?(el) N _Ki'[(_l)lieKiR+eiKiR],Ei<O. (CG)

Their behavior at larg® is characterized by

Roew Finally,
&) — k'"lsinkR—lm2),>0, (€3

R—x

fe) — « 1T [eNR—(—1)lie 4] <0, (C4 W(f0,g%)=10g% — %' g0=1. (C7)
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