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A general theory of slow-atom collisions is presented with special emphasis on the effects of nuclear
statistics and atomic fine and/or hyperfine structures. Symmetry properties of the collision complex and cor-
relations between the molecular states and the separated-atom states are carefully examined. The frame trans-
formations between various angular momentum coupling schemes are derived, which, in combination with the
multichannel quantum defect theory, provides a solid foundation for the computation and the physical inter-
pretation of slow-atom collision processes. The theory reduces to those of Stoofet al. @Phys. Rev. B38, 4688
~1988!# and Zygelmanet al. @Phys. Rev. A49, 2587 ~1994!; 50, 3920 ~1994!# in their respective ranges of
validity. @S1050-2947~96!02108-7#

PACS number~s!: 34.101x, 32.80.Pj

I. INTRODUCTION

The importance and the novelty of cold-atom collisions
are well documented. A review of the theoretical aspects of
this problem can be found in@1#. The experimental aspects
are reviewed in@2#. The recent discovery of Bose-Einstein
condensation in a weakly interacting atomic vapor@3# is a
further motivation for a careful examination of this subject.

Compared to atomic collisions at room temperatures or
above, cold-atom collisions have a number of distinctive fea-
tures. First, long-range interactions are important@4#. Sec-
ond, hyperfine structures, if there are any, play a significant
role in determining the collision dynamics@2,5#. This is eas-
ily understood. For a typical ground hyperfine splitting of 1
GHz, the atomic kinetic energy becomes comparable to the
hyperfine structure at around 0.1 K, which is where the hy-
perfine effects become important. Third, if the collision hap-
pens in a near-resonant laser field, the effects of spontaneous
decay and optical pumping also become important@6,1,2#.
Lastly, cold-atom collisions are sensitive to the potential, i.e.,
a small error in the potential can lead to a large uncertainty in
the cross section@4,7,8#. This is, for the most part, a general
feature of slow-atom collisions, due mainly to the fact that
atoms are much heavier than electrons~see Sec. III A!.

There are many theories of slow-atom collisions@9–19#.
But the effects of the atomic hyperfine structure and the
nuclear statistics have not been treated in a fully systematic
manner. It should be pointed out that the notion of nuclear
statistics is more fundamental than the notion of atomic sta-
tistics. For example, is a85Rb atom in the groundF53 state
distinguishable from a85Rb atom in the groundF52 state?
What about a85Rb1 ion and a85Rb atom? These are impor-
tant questions related to the quantum statistics of an atomic
vapor. We will get back to them in Sec. IV. The point to be
made here is that at a more fundamental level, the task is to
ensure that the total wave function has proper symmetry un-
der the exchange of nuclei.

The theory of Stoof and Verhaar and their collaborators
@20,21# has captured almost all the essential physics of cold
collisions between alkali-metal atoms in their ground states.
However, owing to the effective-atom nature of their theory,
one basically has to develop a different theory for atoms with

different angular momenta or for the same atoms in different
electronic states. The theory presented in this paper is more
general. For example, it is capable of treating resonant
charge exchange processes such as

Rb11Rb→Rb1Rb1,

which have not been studied at cold temperatures achievable
in atom traps. It is also capable of treating resonance ex-
change processes such as

Rb*1Rb→Rb1Rb*,

provided that the collision proceeds sufficiently fast so that
spontaneous emission~and laser pumping if the collision
happens inside a laser field! can be ignored during the colli-
sion. Furthermore, as the success of previous works of Mies
and Julienne@17,22# and Gribakin and Flambaum@4,8,23#
indicates, the effects of long-range interactions can be treated
most naturally and effectively using the multichannel quan-
tum defect theory~MQDT! @24–28#. The work of Stoof and
Verhaar and their collaborators@20,21# has not taken full
advantage of it. By incorporating MQDT and the frame
transformation technique@29–33#, we provide a method for
quickly obtaining complete information about hyperfine col-
lisions from existing single channel calculations@34,8,23#.
The method can be refined systematically, and it leaves the
door open for anR-matrix @35–40# type of treatment of
short-range interactions, which may be needed if highly ac-
curate results are desired.

Our theory of a slow-atom collision between atomsA and
B is presented in Sec. II and is divided into subsections ac-
cording to the classification of a collision into three different
categories. Section II A deals with the case ofZAÞZB ,
which represents a collision between two different atoms,
such as Rb1 Ar. It is of interest in the understanding of
optical properties of gas cells and atomic spectroscopy. Sec-
tion II B deals with the case of a collision between two simi-
lar atoms whose nuclei have the same charge (ZA5ZB), but
are otherwise distinguishable~due to either different spin or
different mass!. An example of this type of collision is
85Rb 1 87Rb. Section II C deals with the collision between
two atoms with identical nuclei, such as85Rb 1 85Rb and
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85Rb11 85Rb. It is our hope that by putting these different
cases together in a concise fashion, their similarities and dif-
ferences will become more transparent. Various angular mo-
mentum coupling schemes are discussed in Sec. II D and
Appendix A. Frame transformations and the MQDT are dis-
cussed in Sec. II E.

II. THEORY

We consider a collision between two atomsA andB in a
pair of LS coupled manifolds (a1L1S1) and (a2L2S2). The
atoms are identified by their respective nuclei. If the two
nuclei are identical, this identification is facilitated by label-
ing one of themA and the other oneB.

The Hamiltonian describing the two colliding atoms can
be written as

H52
\2

2m
¹R
21HBO1Hf1Hhf , ~1!

wherem is the reduced mass of the two atoms.Hf represents
the spin-orbital interactions, andHhf represents the hyperfine
interactions. Equation~1! serves todefinethe adiabatic Born-
Oppenheimer HamiltonianHBO to be used in this paper@41#.

For a collision between two atoms having fine and/or hy-
perfine structures, a fragmentation channel@42# having a to-
tal angular momentumT and a projection on a space-fixed
axisMT is specified by a set of quantum numbers such as

~a1L1S1J1I 1F1!A~a2L2S2J2I 2F2!BFlTMT ,

whereF results from the coupling ofF1 and F2; l is the
relative orbital angular momentum of the centers of mass of
the two atoms. This set of quantum numbers specifies an
angular momentum coupling scheme which diagonalizes
both the spin-orbital and the hyperfine interactions at large
interatomic separations. We will identify this coupling
scheme asJ1F1J2F2F, or FF coupling for short.

There are other possible representations of channels cor-
responding to different angular momentum coupling
schemes. One of them is specified by quantum numbers such
as

~a1L1S1I 1!A~a2L2S2I 2!BLlLSKITMT ,

whereL5L1 l, andK5L1S. ThusL represents the total
orbital angular momentum, andK represents the total angu-
lar momentum excluding nuclear spin. This coupling scheme
will be identified byLLSKI, or LS coupling for short. An-
other channel representation is specified by a set of quantum
numbers such as

~a1L1S1J1I 1!A~a2L2S2J2I 2!BJlKITMT ,

where J5J11J2 , K5J1 l, and T5K1I . This coupling
scheme will be identified byJ1J2JKI, or JJ coupling for
short.

The total wave function for the collision complex having
definite T andMT can be expanded in terms of adiabatic
channel functions as

cTMTPT5(
b

Fb
TMTPT~R!Gb

TMTPT~R!/R, ~2!

where the summation is over one set of channels.~I will use
indicesa and b to refer to any set of channels,i and j to
refer to the fragmentation channels. Indicesa andb will be
reserved for condensation channels@43#.! The channel func-
tionsFa

TMTPT(R) contain both the electronic wave function
and the angular part of the relative motion of the centers of
mass. They have different symmetry properties for three
classes of collisions mentioned earlier, and will be discussed
in detail in Secs. II A–II C.

Substituting Eq.~2! into the Schro¨dinger equation,

HcTMTPT5EcTMTPT,

and making use of the orthogonality properties of the chan-
nel functions, we obtain, upon ignoring both the radial and
the angular nonadiabatic coupling terms@41#, a set of close-
coupling equations:

S 2
\2

2m

d2

dR2
1
l a~ l a11!\2

2mR2 2EDGa
TMTPT~R!

1(
b

@Vab
BO~R!1Vab

f ~R!1Vab
h f ~R!#Gb

TMTPT~R!50,

~3a!

in which

Vab
BO~R![^Fa

TMTPTuHBOuFb
TMTPT&, ~3b!

Vab
f ~R![^Fa

TMTPTuHf uFb
TMTPT&, ~3c!

Vab
h f ~R![^Fa

TMTPTuHhfuFb
TMTPT&. ~3d!

We look for solutions which satisfy the physical boundary
conditions

c i
TMTPT →

R→`

(
jPo

F j
TMTPT@ f jd j i2gjK ji

~T!~E!#/R, ~4!

where the sum overj is over the openfragmentationchan-
nels only. Functionsf j andgj are determined by the asymp-
totic behavior ofVi j

BO(R). For a collision between two neu-
tral atoms, they are given explicitly by

f kj l j~R!5
1

\ S 2m

pkj
D 1/2kjR jl j~kjR!, ~5a!

gkj l j~R!5
1

\ S 2m

pkj
D 1/2kjRyl j~kjR!, ~5b!

where j l andyl are the spherical Bessel functions@44#, and
we have chosen the normalization constants such that the
wave function defined by Eq.~4! is normalized per unit en-
ergy. The collision cross sections and other physical observ-
ables can be extracted fromKji

(T)(E) in a pretty standard
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fashion ~see Appendix B!. We note that unlessVhf[0, the
physicalK matrix has to be defined in the fragmentation
(FF coupled! channels.

A. The case ofZAÞZB

The adiabatic Born-Oppenheimer states and potentials are
defined as the eigenfunctions and eigenvalues ofHBO at a
fixed interatomic separationR:

HBOuML~R̂!SMS~R̂!G;R&

5EMLSG~R!uML~R̂!SMS~R̂!G;R&, ~6!

where the magnetic quantum numbersML andMS are both
quantized along the molecular axisR5RA2RB . These adia-
batic states correspond one to one~the Wigner-Witmer rule
@45,46#! to the properly antisymmetrized two-atom states de-
fined by @16#

u~a1L1S1!A~a2L2S2!BLMLSMS&

5
~N11N2!!

N1!N2!
A (
ML1ML2MS1MS2

^L1ML1 ,L2ML2uLML&

3^S1MS1S2MS2uSMS&ua1L1ML1S1MS1&A

3ua2L2ML2S2MS2&B , ~7!

whereN1 andN2 are numbers of electrons corresponding to
states ua1L1ML1S1MS1& and ua2L2ML2S2MS2&, respec-
tively. A is an antisymmetrization operator that operates on
all electrons. For the sake of simplified notation, the normal-
ization constant and the operatorA will be dropped in fur-
ther references to the two-atom states@47#.

This one-to-one correspondence implies that there exist
quasimolecular states

u~a1L1S1!A~a2L2S2!BLML~R̂!SMS~R̂!;R&,

which are linear combinations of Born-Oppenheimer states,
that satisfy

u~a1L1S1!A~a2L2S2!BLML~R̂!SMS~R̂!;R&

→
R→`

u~a1L1S1!A~a2L2S2!BLML~R̂!SMS~R̂!&. ~8!

Here the state

u~a1L1S1!A~a2L2S2!BLML~R̂!SMS~R̂!&

is a two-atom state as defined by Eq.~7! except that it is
quantized along the molecular axis. They are related to each
other through the relationship

u~a1L1S1!A~a2L2S2!BLML~R̂!SMS~R̂!&

5 (
ML8MS8

DM
L8ML

L
~f,u,0!DM

S8MS

S
~f,u,0!

3u~a1L1S1!A~a2L2S2!BLML8SMS8&, ~9!

where the anglesu andf specify the direction of the mo-
lecular axisR5RA2RB in a space-fixed frame, which by
definition always points from the nucleusB to the nucleus
A.

The symmetry properties of the quasimolecular states de-
fined by Eq. ~8! can be derived from their corresponding
two-atom states. It can be shown that the two-atom states
have the following symmetry properties@48#:

ŝeu~a1L1S1!A~a2L2S2!BLML~R̂!SMS~R̂!&

5P1P2~21!L2MLu~a1L1S1!A~a2L2S2!BL

2ML~R̂!SMS~R̂!&, ~10!

P̂Tu~a1L1S1!A~a2L2S2!BLML~R̂!SMS~R̂!&

5P1P2~21!L1S1ML1MSe2 i ~ML1MS!p

3u~a1L1S1!A~a2L2S2!BL2ML~R̂!S2MS~R̂!&,

~11!

whereŝe refers to the reflection of electronic coordinates in
a plane containing the molecule axis, andP̂T refers to the
total parity operation which inverts both the electronic and
the nuclear coordinates.P1 and P2 are the parities ofLS
manifolds (a1L1S1) and (a2L2S2), respectively@49#. In ar-
riving at Eq.~11!, we have used

DMM8
J

~p1f,p2u,0!5e2 iM 8p~21!J1M8DM2M8
J

~f,u,0!.
~12!

Since molecular interactions cannot break these symme-
tries @50#, the quasimolecular states defined by Eq.~8!, and
the corresponding Born-Oppenheimer states from which they
are constructed, must also have the same symmetry, i.e.,

ŝeu~a1L1S1!A~a2L2S2!BLML~R̂!SMS~R̂!;R&

5P1P2~21!L2MLu~a1L1S1!A~a2L2S2!BL

2ML~R̂!SMS~R̂!;R&, ~13!

P̂Tu~a1L1S1!A~a2L2S2!BLML~R̂!SMS~R̂!;R&

5P1P2~21!L1S1ML1MSe2 i ~ML1MS!p

3u~a1L1S1!A~a2L2S2!BL

2ML~R̂!S2MS~R̂!;R&. ~14!

Specifically, Eq.~13! implies that a quasimolecular state
with ML50 is an eigenstate ofŝe with an eigenvalue

se5P1P2~21!L. ~15!

Other symmetry properties of the quasimolecular states to be
discussed later are all derived this way~i.e., from their cor-
responding two-atom states!.

The quasimolecular state defined by Eq.~8! is generally a
linear combination of Born-Oppenheimer states having the
sameML , S, andMS , and the symmetry properties as speci-
fied by Eqs.~13! and ~14!. If there is only one such Born-
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Oppenheimer~BO! state, then the two have to be equal~up
to a global phase factor!. If there is more than one BO state
satisfying the same criteria, further disentanglement can be
achieved by comparing additional symmetry properties, if
there are any~see, e.g., Sec. II B!, or by comparing the

asymptotic forms ofEMLSG(R) with the asymptotic potentials
calculated using the two-atom states@18#.

We are now in the position to derive the fragmentation
(FF coupled! channel functions defined by the desired
asymptotic behavior:

F
~a1L1S1J1I1F1!A~a2L2S2J2I2F2!BFl
TMTPT →

R→`

(
M1M2MFml

^F1M1 ,F2M2uFMF&

3^FMF ,lml uTMT&ua1L1S1J1I 1F1M1&Aua2L2S2J2I 2F2M2&BYlml
~u,f!, ~16!

which diagonalizes both the asymptotic spin-orbital and the asymptotic hyperfine interactions, and in which all magnetic
quantum numbers are quantized along a space-fixed axis. The task is to find a proper superposition of the quasimolecular
states, which are linear combinations of the adiabatic Born-Oppenheimer states, such that the desired asymptotic behavior is
satisfied for all orientations. From Eqs.~7!–~9!, one can show that this proper superposition is given by

F
~a1L1S1J1I1F1!A~a2L2S2J2I2F2!BFl
TMTPT 5@J1 ,J2 ,F1 ,F2#

1/2(
LSJI

(
allm

@L,S,J,I #1/2

3^LML8 ,SMS8uJMJ8&^JMJ ,IM I uFiMF&^FMF ,lml uTMT&

3H L1 L2 L

S1 S2 S

J1 J2 J
J H J1 J2 J

I 1 I 2 I

F1 F2 F
J DMJMJ8

J*
~f,u,0!Ylml

~u,f!

3u~a1L1S1!A~a2L2S2!BLML8~R̂!SMS8~R̂!;R&u~ I 1!A~ I 2!BIM I&. ~17!

Not only does this channel function have the desired a-
symptotic behavior characterized by Eq.~16!, but one can
also show from Eqs.~12! and ~14! that it is an eigenstate of
the total parity operator with an eigenvalue

PT5P1P2~21! l . ~18!

With channel functions given in terms of the quasimo-
lecular states, we can now express the potentialVi j

BO(R) that
enters the close-coupling equation~3! in terms of the adia-
batic Born-Oppenheimer potentials. Some calculations lead
to

^F~a1L1S1J1i I1F1i !A~a2L2S2J2i I2F2i !BFi l i

TiMTiPTi uHBOuF
~a1L1S1J1 j I1F1 j !A~a2L2S2J2 j I2F2 j !BF j l j

TjMT jPT j &

5dTiTjdMTiMT j
dPTiPT j

~21!Fi2F j@J1i ,J2i ,F1i ,F2i ,Fi ,l i ,J1 j ,J2 j ,F1 j ,F2 j ,F j ,l j #
1/2

3 (
MLMS

(
LSKIJiJj

~21!Jj2Ji@L,S,K,I ,Ji ,Jj #H l i K Ji

I F i Ti
J H l j K Jj

I F j Tj
J

3H L1 L2 L

S1 S2 S

J1i J2i Ji
J H L1 L2 L

S1 S2 S

J1 j J2 j Jj
J H J1i J2i Ji

I 1 I 2 I

F1i F2i Fi

J H J1 j J2 j Jj

I 1 I 2 I

F1 j F2 j F j

J
3S L S Ji

ML MS 2ML2MS
D S L S Jj

ML MS 2ML2MS
D S Ji l i K

ML1MS 0 2ML2MS
D

3S Jj l j K

ML1MS 0 2ML2MS
D EMLSG~R!, ~19!
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wheredPTiPT j
implies l i2 l j5even@cf. Eq. ~18!#.

If both atoms have zero nuclear spin, i.e.,I 15I 250, Eq. ~19! reduces to

Vi j
BO5dTiTjdMTiMT j

dPTiPT j
~21!Ji2Jj@J1i ,J2i ,Ji ,l i ,J1 j ,J2 j ,Jj ,l j #

1/2 (
MLMSLS

@L,S#H L1 L2 L

S1 S2 S

J1i J2i Ji
J H L1 L2 L

S1 S2 S

J1 j J2 j Jj
J

3S L S Ji

ML MS 2ML2MS
D S L S Jj

ML MS 2ML2MS
D S Ji l i T

ML1MS 0 2ML2MS
D

3S Jj l j T

ML1MS 0 2ML2MS
D EMLSG~R!, ~20!

which agrees with the result of Zygelmanet al. @18,19,51#.
To determine the potentials associated withHf andHhf , one should, in principle, calculate the matrix elements of these

interactions with the fragmentation channel functions given by Eq.~17!. At largeR, they both become diagonalized and are
given by

Vi j
f 1Vi j

h f →
R→`

~DEi
f1DEi

h f!d i j , ~21!

whereDEi
f is the sum of fine-structure splitting for the two colliding atoms, andDEi

h f is the total hyperfine splitting. For
simplicity, we will use this asymptotic potential for allR.

The close-coupling equation~3! can now be solved subject to the physical boundary condition of Eq.~4!. TheSmatrix, the
scattering amplitude, and the differential cross sections are derived in the standard fashion~see Appendix B! and are given by

S~T!~E!5@ I1 iK ~T!~E!#@ I2 iK ~T!~E!#21, ~22!

whereI represents a unit matrix, and

f „~a1L1S1J1iF1iM1i !A~a2L2S2J2iF2iM2i !Bk i→~a1L1S1J1 jF1 jM1 j !A~a2L2S2J2 jF2 jM2 j !Bk j…

5 (
l imli l jml j

2p i

~kikj !
1/2 i

l i2 l jYl imli
* ~ k̂ i !Yl jml j

~ k̂ j ! (
FiMFiF jMF jTMT

^F1 jM1 j ,F2 jM2 j uF jMFj&^F jMFj ,l jml j uTMT&@S
~T!~E!2I # j i

3^F1iM1i ,F2iM2i uFiMFi&^FiMFi ,l imli uTMT&, ~23!

ds

dV
„~a1L1S1J1iF1iM1i !A~a2L2S2J2iF2iM2i !Bk i→~a1L1S1J1 jF1 jM1 j !A~a2L2S2J2 jF2 jM2 j !Bk j…5

kj
ki

u f ~ i→ j !u2, ~24!

where f ( i→ j ) is a short-hand notation for the amplitude given by Eq.~23!.

B. The case of similar„ZA5ZB… atoms
with distinguishable nuclei

An example of this case would be the collision between a
85Rb atom and a87Rb atom.
As long asZA5ZB , the Born-Oppenheimer states defined

by Eq. ~6! have inversion symmetry with respect to the cen-
ter of the molecule, provided that nonadiabatic couplings are
ignored @52#. On the other hand, the quasimolecular state
defined by Eq.~8! may or may not have this symmetry. From
its corresponding two-atom state, one can show that the
quasimolecular state behaves under inversion as@47,48#

Î eu~a1L1S1!A~a2L2S2!BLML~R̂!SMS~R̂!;R&

5P1P2~21!N1N21L11L22L1S11S22Su~a2L2S2!A

3~a1L1S1!BLML~R̂!SMS~R̂!;R&, ~25!

where Î e refers to the inversion of electronic coordinates
with respect to the center of the molecule. Two distinctive
cases need to be addressed separately here.

1. a2L 2S25a1L 1S1

The situation is this case does not differ very much from
the case ofZAÞZB discussed in the previous section, since
the quasimolecular states of Eq.~8! already have the proper
inversion symmetry. From Eq.~25!, we have

Î eu~a1L1S1!A~a1L1S1!BLML~R̂!SMS~R̂!;R&

5WLSu~a1L1S1!A~a1L1S1!BLML~R̂!SMS~R̂!;R& ~26!

with

WLS5~21!L1S. ~27!
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Thus the potential is again given by Eq.~19! except that we
can add one more quantum number to the notation by replac-
ing EMLSG by EMLSWLSG . Everything else remains unchanged.

2. a2L 2S2Þa1L 1S1

The situation becomes much different here since the
quasimolecular state,

u~a1L1S1!A~a2L2S2!BLML~R̂!SMS~R̂!;R&

no longer has the proper inversion symmetry. However, its
relationship with BO states of the proper symmetry is rather
simple. From Eq.~25!, one can choose a phase convention
such that

u~a1L1S1!A~a2L2S2!BLML~R̂!SMS~R̂!;R&5
1

A2
@ uML~R̂!SMS~R̂!gG;R&1uML~R̂!SMS~R̂!uG;R&], ~28a!

u~a2L2S2!A~a1L1S1!BLML~R̂!SMS~R̂!;R&

5P1P2~21!N1N21L11L22L1S11S22S
1

A2
@ uML~R̂!SMS~R̂!gG;R&2uML~R̂!SMS~R̂!uG;R&], ~28b!

where the symbolsg andu refer to gerade and ungerade states, respectively. A more important difference introduced by the
similarity of the atoms is that there are now additional channels described by channel functions:

F
~a2L2S2J2I1F2!A~a1L1S1J1I2F1!BFl
TMTPT

5@J1 ,J2 ,F1 ,F2#
1/2(

LSJI
(
all m

@L,S,J,I #1/2^LML8 ,SMS8uJMJ8&^JMJ ,IM I uFiMF&^FMF ,lml uTMT&

3H L2 L1 L

S2 S1 S

J2 J1 J
J H J2 J1 J

I 1 I 2 I

F2 F1 F
J DMJMJ8

J*
~f,u,0!Ylml

~u,f!

3u~a2L2S2!A~a1L1S1!BLML8~R̂!SMS8~R̂!;R&u~ I 1!A~ I 2!BIM I&, ~29!

which corresponds to interchanging the electronic states of the two atoms in Eq.~17!. These two sets of channels are coupled,
and it is this coupling that gives rise to the resonance exchange.

The complete potentialVi j
BO is now given in terms of the BO potentials by the following set of equations:

^F~a1L1S1J1i I1F1i !A~a2L2S2J2i I2F2i !BFi l i

TiMTiPTi uHBOuF
~a1L1S1J1 j I1F1 j !A~a2L2S2J2 j I2F2 j !BF j l j

TjMT jPT j &

5dTiTjdMTi
MTj

~21!Fi2F j@J1i ,J2i ,F1i ,F2i ,Fi ,l i ,J1 j ,J2 j ,F1 j ,F2 j ,F j ,l j #
1/2 (

MLMSLSIKJiJj
~21!Ji2Jj@L,S,I ,K,Ji ,Jj #

3H l i K Ji

I F i Ti
J H l j K Jj

I F j Tj
J H L1 L2 L

S1 S2 S

J1i J2i Ji
J H J1i J2i Ji

I 1 I 2 I

F1i F2i Fi

J H L1 L2 L

S1 S2 S

J1 j J2 j Jj
J H J1 j J2 j Jj

I 1 I 2 I

F1 j F2 j F j

J
3S L S Ji

ML MS 2ML2MS
D S L S Jj

ML MS 2ML2MS
D S Ji l i K

ML1MS 0 2ML2MS
D

3S Jj l j K

ML1MS 0 2ML2MS
D 12 ~EMLSMSgG1EMLSMSuG!, ~30a!

^F~a2L2S2J2i I1F2i !A~a1L1S1J1i I2F1i !BFi l i

TiMTiPTi uHBOuF
~a2L2S2J1 j I1F1 j !A~a1L1S1J2 j I2F2 j !BF j l j

TjMT jPT j &

5dTiTjdMTi
MTj

~21!Fi2F j@J1i ,J2i ,F1i ,F2i ,Fi ,l i ,J1 j ,J2 j ,F1 j ,F2 j ,F j ,l j #
1/2 (

MLMSLSIKJiJj
~21!Ji2Jj@L,S,I ,K,Ji ,Jj #
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3H l i K Ji

I F i Ti
J H l j K Jj

I F j Tj
J H L2 L1 L

S2 S1 S

J2i J1i Ji
J H J2i J1i Ji

I 1 I 2 I

F2i F1i Fi

J H L2 L1 L

S2 S1 S

J2 j J1 j Jj
J H J2 j J1 j Jj

I 1 I 2 I

F2 j F1 j F j

J
3S L S Ji

ML MS 2ML2MS
D S L S Jj

ML MS 2ML2MS
D S Ji l i K

ML1MS 0 2ML2MS
D

3S Jj l j K

ML1MS 0 2ML2MS
D 12 ~EMLSMSgG1EMLSMSuG!, ~30b!

^F~a1L1S1J1i I1F1i !A~a2L2S2J2i I2F2i !BFi l i

TiMTiPTi uHBOuF
~a2L2S2J2 j I1F2 j !A~a1L1S1J1 j I2F1 j !BF j l j

TjMT jPT j &

5^F~a2L2S2J2 j I1F2 j !A~a1L1S1J1 j I2F1 j !BF j l j

TjMT jPT j uHBOuF
~a1L1S1J1i I1F1i !A~a2L2S2J2i I2F2i !BFi l i

TiMTiPTi &

5dTiTjdMTi
MTj

P1P2~21!Fi2F j1N1N2@J1i ,J2i ,F1i ,F2i ,Fi ,l i ,J1 j ,J2 j ,F1 j ,F2 j ,F j ,l j #
1/2

3 (
MLMSLSIKJiJj

~21!J1 j1J2 j2Ji@L,S,I ,K,Ji ,Jj #H l i K Ji

I F i Ti
J H l j K Jj

I F j Tj
J H L1 L2 L

S1 S2 S

J1i J2i Ji
J H J1i J2i Ji

I 1 I 2 I

F1i F2i Fi

J
3H L1 L2 L

S1 S2 S

J1 j J2 j Jj
J H J2 j J1 j Jj

I 1 I 2 I

F2 j F1 j F j

J S L S Ji

ML MS 2ML2MS
D S L S Jj

ML MS 2ML2MS
D

3S Ji l i K

ML1MS 0 2ML2MS
D S Jj l j K

ML1MS 0 2ML2MS
D 12 ~EMLSMSgG2EMLSMSuG!. ~30c!

Note that the coupling which gives rise to the resonance exchange@Eq. ~30c!# is determined by the energy differences between
the gerade and the ungerade states.

The notations for the scattering amplitude and the cross section need to be changed from those in Eqs.~23! and ~24! to

f ~„~aLS!1iJ1iF1iM1i…A„~aLS!2iJ2iF2iM2i…Bk i→„~aLS!1 j J1 jF1 jM1 j…A„~aLS!2 j J2 jF2 jM2 j…Bk j !,

ds

dV
~„~aLS!1iJ1iF1iM1i…A„~aLS!2iJ2iF2iM2i…Bk i→„~aLS!1 j J1 jF1 jM1 j…A„~aLS!2 j J2 jF2 jM2 j…Bk j !,

to account for the possibility of resonance exchange. Here (aLS) can either bea1L1S1 or a2L2S2 .

C. The case of identical nuclei

The new element in this case is that the total wave func-
tion must have proper symmetry under the exchange of nu-
clei. From the corresponding two-atom state and Eq.~12!,
one can show that the quasimolecular state defined by Eq.~8!
behaves as@47,48#

X̂nu~a1L1S1!A~a2L2S2!BLML~R̂!SMS~R̂!;R&

5~21!N1N21L11L22L1S11S22S

3u~a2L2S2!A~a1L1S1!BLML~2R̂!SMS~2R̂!;R&

5~21!N1N21L11L21S11S21ML1MSe2 i ~ML1MS!p

3u~a2L2S2!A~a1L1S1!BL2ML~R̂!S2MS~R̂!;R&

~31!

under the exchange of nuclei, an operation denoted byX̂n .

From this equation and Eq.~12!, it is straightforward to
show that the channel function defined by Eq.~17! behaves
as

X̂nF~a1L1S1J1I1F1!A~a2L2S2J2I1F2!BFl
TMTPT ~R!

5~21!N1N21F11F22F1 l

3F
~a2L2S2J2I1F2!A~a1L1S1J1I1F1!BFl
TMTPT ~R! ~32!

~keeping in mind that identical nuclei implies, of course,
I 25I 1). Thus a channel function with the desired symmetry
property,

X̂nF$a1L1S1J1I1F1 ,a2L2S2J2I1F2%Fl
TMTPT ~R!

5~21!2I1F
$a1L1S1J1I1F1 ,a2L2S2J2I1F2%Fl
TMTPT ~R!, ~33!

2028 54BO GAO



can be written in terms of channel functions given by Eq.
~17! as

F
$a1L1S1J1I1F1 ,a2L2S2J2I1F2%Fl
TMTPT ~R!

5CFF@F
~a1L1S1J1I1F1!A~a2L2S2J2I1F2!BFl
TMTPT ~R!

1~21!N1N212I11F11F22F1 l

3F
~a2L2S2J2I1F2!A~a1L1S1J1I1F1!BFl
TMTPT ~R!#, ~34!

in which CFF is a normalization constant given by

CFF5$2@11d~a2L2S2J2I 1F2 ,a1L1S1J1I 1F1!#%
21/2.

Equation~34! implies that if

~a2L2S2J2I 1F2!5~a1L1S1J1I 1F1!

~implying, of course,N15N2), only states satisfying

F1 l5even ~35!

are possible@53#, regardless of whether the nuclei are bosons
or fermions.

The potentialVi j
BO is given in this case by

^F$a1L1S1J1i I1F1i ,a2L2S2J2i I1F2i %Fi l i

TiMTiPTi uHBOuF
$a1L1S1J1 j I1F1 j ,a2L2S2J2 j I1F2 j %F j l j

TjMT jPT j &

52Ci
FFCj

FF@^F~a1L1S1J1i I1F1i !A~a2L2S2J2i I1F2i !BFi l i

TiMTiPTi uHBOuF
~a1L1S1J1 j I1F1 j !A~a2L2S2J2 j I1F2 j !BF j l j

TjMT jPT j &

1~21!N1N212I11 l j1F1 j1F2 j2F j^F~a1L1S1J1i I1F1i !A~a2L2S2J2i I1F2i !BFi l i

TiMTiPTi uHBOuF
~a2L2S2J2 j I1F2 j !A~a1L1S1J1 j I1F1 j !BF j l j

TjMT jPT j &#,

~36!

where the matrix elements on the right-hand side are given by Eq.~30! for (a1L1S1)Þ(a2L2S2), and by Eq.~19! for
(a1L1S1)5(a2L2S2).

The differential cross section in the center-of-mass frame is given by~see Appendix B!

ds

dV
@$~aLS!1iJ1iF1iM1i ,~aLS!2iJ2iF2iM2i%k i→$~aLS!1 j J1 jF1 jM1 j ,~aLS!2 j J2 jF2 jM2 j%k j #

5
kj
ki

uCj
FFu2

uCi
FFu2

u f ~ i→ j ,k j !1~21!N1N212I1f ~ i→ j ,2k j !u2, ~37!

wheref ( i→ j ,k j ) is a short-hand notation for the full expres-
sion

f „$~aLS!1iJ1iF1iM1i ,~aLS!2iJ2iF2iM2i%k i
→$~aLS!1 j J1 jF1 jM1 j ,~aLS!2 j J2 jF2 jM2 j%k j…,

which is related to theS matrix by Eq.~23!. Equation~37!
implies that

ds

dV
~2k j !5

ds

dV
~k j !

~in the center-of-mass frame! is generally applicable to col-
lisions between atoms with identical nuclei, which may be in
different states or carry different charge.

D. LS coupling

In previous sections, we have established the proper iden-
tification of fragmentation channels and the close-coupling
equations to be solved for different types of collisions. The
rest of this paper deals basically with the question of how to
solve these equations effectively.

The potentials given by Eqs.~19!, ~30!, and~36! are com-
plicated because the fragmentation channel functions do not
reflect the symmetry ofHBO . A much simpler representation
of VBO can be obtained in theLS coupled condensation
channels@43#, which are defined, in the case of distinguish-
able nuclei, by the asymptotic behavior

F
~a1L1S1I1!A~a2L2S2I2!BLlLSKI
TMTPT →

R→`

(
all m

^L1ML1 ,L2ML2uLML&^LML ,lml uLML&^S1MS1 ,S2MS2uSMS&^LML ,SMSuKMK&

3^KMK ,IM I uTMT&ua1L1ML1S1MS1&Aua2L2ML2S2MS2&BYlml
~u,f!u~ I 1!A~ I 2!BIM I&,

~38!

where all the magnetic quantum numbers are quantized along a space-fixed axis. A channel function with such an asymptotic
behavior can be written in terms of the quasimolecular states defined by Eq.~8! as
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F
~a1L1S1I1!A~a2L2S2I2!BLlLSKI
TaMTPT 5 (

all m
^LML ,lml uLML&^LML ,SMSuKMK&

3^KMK ,IM I uTMT&DMLML8
L*

~f,u,0!DMSMS8
S*

~f,u,0!Ylml
~u,f!u~a1L1S1!A~a2L2S2!B

3LML8~R̂!SMS8~R̂!;R&u~ I 1!A~ I 2!BIM I&. ~39!

The potentialVBO becomes much simplified in this coupling scheme and is given by

^F~a1L1S1I1!A~a2L2S2I2!BLa laLaSaKaIa

TaMTaPTa uHBOuF
~a1L1S1I1!A~a2L2S2I2!BLb lbLbSbKbIb

TbMTbPTb &

5dTbTa
dMTbMTa

dPTbPTa
dLbLa

dLbLa
dSbSa

dKbKa
d IbIa@ l a ,l b#1/2(

ML
S La l a La

ML 0 2ML
D S La l b La

ML 0 2ML
D EMLSaLa

~R!,

~40!

which is block diagonal in all quantum numbers exceptl . This potential is consistent with Eq.~22! of Ref. @19#.
In the case of similar atom (ZA5ZB) with distinguishable nuclei and (a1L1S1)Þ(a2L2S2), there are additional channels

characterized by

F
~a2L2S2I1!A~a1L1S1I2!BLlLSKI
TaMTPT 5 (

all m
^LML ,lml uLML&^LML ,SMSuKMK&^KMK ,IM I uTMT&DMLML8

L*
~f,u,0!DMSMS8

S*
~f,u,0!

3Ylaml
~u,f!u~a2L2S2!A~a1L1S1!BLML8~R̂!SMS8~R̂!;R&u~ I 1!A~ I 2!BIM I&, ~41!

which is a result of interchanging the electronic states in Eq.~39!. With the help of Eq.~28!, we obtain the potentialVab
BO :

^F~a1L1S1I1!A~a2L2S2I2!BLa laLaSaKaIa

TaMTaPTa uHBOuF
~a1L1S1I1!A~a2L2S2I2!BLb lbLbSbKbIb

TbMTbPTb &

5^F~a2L2S2I1!A~a1L1S1I2!BLa laLaSaKaIa

TaMTaPTa uHBOuF
~a2L2S2I1!A~a1L1S1I2!BLb lbLbSbKbIb

TbMTbPTb &

5dTbTa
dMTbMTa

dPTbPTa
dLbLa

dLbLa
dSbSa

dKbKa
d IbIa@ l a ,l b#1/2(

ML
S La l a La

ML 0 2ML
D

3S La l b La

ML 0 2ML
D 12 @EMLSagLa

~R!1EMLSauLa
~R!#, ~42a!

^F~a1L1S1I1!A~a2L2S2I2!BLa laLaSaKaIa

TaMTaPTa uHBOuF
~a2L2S2I1!A~a1L1S1I2!BLb lbLbSbKbIb

TbMTbPTb &

5dTbTa
dMTbMTa

dPTbPTa
dLbLa

dLbLa
dSbSa

dKbKa
d IbIaP1P2

3~21!N1N21L11L22Lb1S11S22Sb@ l a ,l b#1/2(
ML

S La l a La

ML 0 2ML
D S La l b La

ML 0 2ML
D

3
1

2
@EMLSagLa

~R!2EMLSauLa
~R!#. ~42b!

In the case of identical nuclei, the channel functions must
have a proper symmetry under the exchange of nuclei. From
Eqs.~12! and ~31!, we have

X̂nF~a1L1S1I1!A~a2L2S2I1!BLlLSKI
TMTPT ~R!

5~21!N1N21L11L22L1S11S22S12I12I1 l

3F
~a2L2S2I1!A~a1L1S1I1!BLlLSKI
TMTPT ~R!. ~43!

Thus a channel function with proper symmetry under the
exchange of nuclei is given by

F
$a1L1S1I1 ,a2L2S2I1%LlLSKI
TMTPT ~R!

5CLS@F
~a1L1S1I1!A~a2L2S2I1!BLlLSKI
TMTPT ~R!

1~21!N1N21L11L22L1S11S22S2I1 l

3F
~a2L2S2I1!A~a1L1S1I1!BLlLSKI
TMTPT ~R!#, ~44!
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which satisfies

X̂nF$a1L1S1I1 ,a2L2S2I1%LlLSKI
TMTPT ~R!

5~21!2I1F
$a1L1S1I1 ,a2L2S2I1%LlLSKI
TMTPT ~R!. ~45!

The constantCLS is a normalization constant:

CLS5$2@11d~a2L2S2 ,a1L1S1!#%
21/2.

Equation~44! implies that if

~a2L2S2!5~a1L1S1!

~implying, of course,N15N2), only states satisfying

L1S1I1 l5even ~46!

are possible@53#. The same condition holds whether the nu-
clei are fermions or bosons. The potentialVab

BO is now

^F$a1L1S1I1 ,a2L2S2I1%La laLaSaKaIa

TaMTaPTa uHBOuF
$a1L1S1I1 ,a2L2S2I1%Lb lbLbSbKbIb

TbMTbPTb &

52Ca
LSCb

LS@^F~a1L1S1I1!A~a2L2S2I1!BLa laLaSaKaIa

TaMTaPTa uHBOuF
~a1L1S1I1!A~a2L2S2I1!BLb lbLbSbKbIb

TbMTbPTb &

1~21!N1N21L11L22Lb1S11S22Sb2Ib1 lb^F~a1L1S1I1!A~a2L2S2I1!BLa laLaSaKaIa

TaMTaPTa

3uHBOuF
~a2L2S2I1!A~a1L1S1I1!BLb lbLbSbKbIb

TbMTbPTb &#, ~47!

with the matrix elements on the right-hand side given by Eq.
~42! if ( a2L2S2)Þ(a1L1S1) and by Eq. ~40! if
(a2L2S2)5(a1L1S1).

It is clear that the representation ofVBO is much simpler
in theLS coupling than in theFF coupling. The catch is, of
course, thatHf andHhf are no longer diagonal. The more
serious problem is that since the channel couplings due to
Hf andHhf do not vanish at largeR, the physicalK matrix
cannot be defined in theLS coupling unlessHf andHhf are
strictly zero. This is where frame transformation and MQDT
come into play.

E. Frame transformations and MQDT

It can be shown~see Appendix A! that theFF coupled
channel functions@Eq. ~17!# are related to theLS coupled
channel functions@Eq. ~39!# by a frame transformation

F j
TMTPT5(

b
Ujb

~T!Fb
TMTPT~R!, ~48!

where

Uib
~T!5d l i lb~21!Fi1Lb1Sb1Kb1Ib

3@J1i ,F1i ,J2i ,F2i ,Fi ,Lb ,Lb ,Sb ,Kb ,I b#1/2

3(
Jx

~21!Jx@Jx#H l i Kb Jx

Sb Lb Lb
J H l i Kb Jx

I b Fi T J
3H L1 L2 Lb

S1 S2 Sb

J1i J2i Jx
J H J1i J2i Jx

I 1 I 2 I b

F1i F2i Fi

J . ~49a!

From Eqs.~34! and ~44!, it is clear that in the case of iden-
tical nuclei, the properly symmetrized channel functions are
related by the frame transformation

U $ i %$b%
~T! 5~Ci

FF/Cb
LS!Uib

~T!

5$11d~a2L2S2 ,a1L1S1!

3@12d~J2iF2i ,J1iF1i !#%
1/2Uib

~T! . ~49b!

For the sake of simplified notation,U $ i %$b%
(T) will also be de-

noted byUib
(T) , with the understanding that the proper trans-

formation is to be used for different cases. We emphasize
that the normalization factor in Eq.~49b! is important. The
transformation would not be unitary without it.

The goal of this section is to present a simple method
which gives complete information about a hyperfine collision
from either the existingLS coupled calculations@34,8,23# or
a JJ coupled calculation discussed in Appendix A. It is an
approximate method that combines the use of frame transfor-
mation and MQDT. The concept of this method is well
known, and has been very successful in interpreting the spin-
orbital effects on photoionization@29–33#. It leads in our
case to a multichannel effective range theory which is the
same as the one developed previously for electron-atom scat-
tering @54#. I will first present the method. The underlying
assumptions and future refinements will then be discussed.

Briefly summarizing the method, we first solve the close-
coupling equations in theLS coupled~condensation! chan-
nels ignoring both the spin-orbital and the hyperfine interac-
tions, or in the JJ coupled channels ignoring only the
hyperfine interactions. An energy-insensitive short-rangeK
matrix (Kab

0(T) in LS coupling;Kxy
0(T) in JJ coupling! is ex-

tracted from this set of solutions, from which the energy-
insensitive short-rangeK matrix in the fragmentation chan-
nels, Ki j

0(T), is obtained through a frame transformation.
MQDT is then applied to give the physicalK matrixKi j

(T) in
terms ofKi j

0(T) .
Specifically,Kab

0(T) is defined by the largeR expansion of
the wave function inLS coupled condensation channels as
follows:
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cb
TMTPT5(

a
Fa

TMTPT~R!~ f a
0dab2ga

0Kab
0~T!!/R. ~50!

Here f a
0 andga

0 are a pair of linearly independent solutions
corresponding to the asymptotic potential in a condensation
channela. They differ from the usualf a ,ga pair in that they
are required to have energy-independent normalization at the
origin. If the interaction in a condensation channel can be
treated as a short-range interaction,f a

0 andga
0 are specifically

a pair of analytic functions of energy~see Appendix C!:

f a
0~ea!5

1

ka
la
Rjla~kaR!, ~51a!

ga
0~ea!5ka

la11Ryla~kaR!, ~51b!

where

ea5E2Ea ,

ka5~2mea!1/2/\.

Note that the expansion Eq.~50! with an R-independent
K0T at largeR is possible only when the spin-orbital and the
hyperfine interactions are ignored~this is why the physical
K matrix cannot be defined inLS coupling unless there are
no such interactions!.

The energy-insensitiveKi j
0(T) is defined in a similar fash-

ion by a largeR expansion of the wave function in fragmen-
tation channels:

c j
TMTPT5(

i
F i

TMTPT~R!~ f i
0d i j2gi

0Ki j
0T!/R. ~52!

After solving forKab
0(T) in the condensation channels,Ki j

0(T) is
obtained by using the frame transformation Eq.~49!:

Ki j
0T5(

ab
Uia

~T!Kab
0TU jb

~T! . ~53!

The wave functions satisfying the proper physical boundary
conditions are then constructed as linear superpositions of
solutions specified by Eq.~52!. This is a standard procedure
in MQDT @26,28#, and lead in our case to the multichannel-
effective-range equation@54#, which relates the physicalK
matrix toKi j

0T :

K ~T!~E!5kl11/2$Koo
0~T!2Koc

0~T!k l11/2

3@~21! l1k l11/2Kcc
0~T!k l11/2#21

3k l11/2Kco
0~T!%kl11/2. ~54!

Here kl11/2 is an No3No diagonal matrix with elements
ki
l i11/2, with No being the number of open channels at en-
ergyE. k l11/2 is anNc3Nc diagonal matrix with elements
k i
l i11/2, with Nc being the number of closed channels at

energyE, and

k i5@2m~Ei2E!#1/2/\.

(21)l is anNc3Nc diagonal matrix with elements (21)l i.
Koo
0(T) , Koc

0(T) , Kco
0(T) , andKcc

0(T) , are submatrices ofK0(T)

corresponding to open-open, open-close, close-open, and
close-close channels, respectively. It should be remembered
that theK0(T) matrix referred to here is the one in fragmen-
tation channels. It is related to the one in condensation chan-
nels by Eq.~53!.

If all channels are closed, the physical boundary condi-
tions can only be satisfied at discrete energy levels deter-
mined by

det@~21! l1k l11/2K0~T!k l11/2#50, ~55!

which gives the relationship between bound state energy lev-
els and the scattering matrix.

Specializing to the case of collision between alkali-metal
atoms in their ground states, Eqs.~49!, ~53!, and~54! enable
one to generate complete information about the collision
from single channel calculations such as those of@34,8,23#.
Numerical results of this sort will be presented later.

If the spin-orbit interaction is significant, theKab
0T matrix

in Eq. ~53! should be replaced byKxy
0T calculated by solving

the close-coupling equations in theJJ coupling scheme~see
Appendix A!, and the frame transformationUib

(T) is replaced
by Uix

(T) given by Eqs.~A6! and ~A15!.
The theory presented in this section is, of course, only an

approximation with a certain range of validity. It relies on
Eq. ~53!, which is strictly valid only when there are no spin-
orbit and hyperfine interactions. The corresponding transfor-
mation fromJJ coupling requires the hyperfine interactions
to be zero. However, they are useful approximations even in
the presence of such interactions. First, it is obviously a good
method to account for the hyperfine effects at energies much
greater than the hyperfine splitting. This covers a wide en-
ergy range that is of great importance in many applications
@2#. Second, the degree to which these approximations fail is
a direct measure of the effects of long-range interactions.
This is because Eq.~53! is always going to be valid inside an
R0 where theLS coupled (JJ coupled! potential is much
greater than the spin-orbital~hyperfine! interactions. Thus
the frame transformation method presented in this section
basically assumes that afterR0 the electrostatic and the ex-
change interactions are sufficiently weak or that they drop
off so quickly that their effects can be ignored. Third, it can
be systematically improved upon. Specifically, the effect of
long-range interactions in the outside region where the hy-
perfine interaction is dominant can be incorporated by a
proper choice of thef 0 andg0 pair. For a 1/r 6 potential, the
proper pair can be obtained either by the usual perturbation
theory or by a method of Cavagnero@55#. Any error after
such a correction reflects the evolution of the wave function
through the intermediate region where the electrostatic and
the exchange interaction is comparable to the hyperfine in-
teractions. This region can be treated by solving the close-
coupling equation in theFF coupled channels, if needed. It
will be interesting to identify the significance of this contri-
bution, especially its energy dependence.
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III. DISCUSSIONS

A. Sensitivity to the potential

It is well recognized and understood that cold-atom colli-
sions are very sensitive to the potential@4,7,8#. We give here
a brief discussion of some issues of interest in our present
work.

The total phase shift of a collision comprises contribu-
tions from both short-range and long-range interactions. We
will assume that the asymptotic potentials are known pre-
cisely and look at the dependence of the short-range phase
on the potential.

For atom-atom collisions, the short-range phase can be
estimated by the integral of

k~R!5@~2m!1/2/\#@E2V~R!#1/2,

the uncertainty of which is related to the uncertainty inV by

uDku5~m/2\2!1/2@E2V~R!#21/2uDVu.

If the distance over which the potential may be in error is
denoted byd, the condition that the phase is determined
within p is roughlyuDkud,p. For slow-atom collisions, the
corresponding requirement on the uncertainty in potential
can be estimated by

uDVu,
p

d S 2\2

m D 1/2uVminu1/2, ~56!

whereVmin is the depth or some typical value of the poten-
tial. Thus we see that the sensitive dependence of slow-atom
collisions is due mainly to the large mass of an atom. Since
atoms are thousands times heavier than electrons and the
distance over which the potential may be incorrect is about a
few times bigger, it follows that the potential has to be about
104 times more accurate if the atom-atom phase shift is to be
determined to the same degree of accuracy as the electron-
atom scattering. This is why quantities such as the angular
distribution are so much more difficult to determine for
atom-atom collision as opposed to electron-atom collisions.

What is unique about cold-atom collisions is that if the
last bound state happens to be very close to the threshold, the
error in the short-range phase gets further amplified in the
determination of cross sections@4#.

Note that a sensitive dependence on potential also implies
a sensitive dependence on energy, since

uDku5~m/2\2!1/2@E2V~R!#21/2uDEu.

Fortunately, it is easily verified that ignoring hyperfine inter-
action over a range of 10 a.u. does not change the phase
significantly, which is actually an assumption that makes the
approximation in the preceding section useful.

B. MQDT and frame transformation as a numerical tool

We point out here that the method of MQDT and frame
transformation is useful even when the goal is to solve the
FF coupled close-coupling equations numerically. MQDT
provides an elegant and systematic way of imposing the
physical boundary conditions, and the frame transformations
lead us to basis sets in which the potential is approximately

block diagonalized in certain regions of the configuration
space. For example, theLS coupling block-diagonalizes the
Born-Oppenheimer part of the potential. The spin-orbit and
hyperfine interactions are not diagonalized. Specifically, if
we take this part of the interaction to be that of two separate
atoms, their matrix elements are given by

Vab
f 5(

x
Uxa

~T!DEx
fUxb

~T! , ~57!

Vab
h f 5(

i
Uia

~T!DEi
h fUib

~T! , ~58!

whereDEx
f is the total fine-structure splitting for the two

atoms in aJJ coupled channelx ~see Appendix A!. Uxa
(T) is

the LS to JJ frame transformation given by Eqs.~A4! and
~A14!. DEi

h f is the total hyperfine splitting for the two atoms
in a fragmentation channeli , andUia

(T) is theLS to FF frame
transformation given by Eq.~49!. It is obvious that in the
region where the electrostatic and exchange interactions
dominate, theLS coupled channel functions provide a better
basis set for numerical integration@21#. Thus, depending on
the strength of the spin-orbital interaction, one can separate
the space into three or four regions. The outermost region is
handled by MQDT; the innermost region is integrated in
LS coupling. The middle region is handled inFF coupling
or a combination ofJJ andFF coupling. Matching at vari-
ous boundaries is facilitated by the frame transformations.
Such a scheme fits especially well with Gordon’s method of
solving the close-coupling equations@56#.

IV. CONCLUSIONS

A general theory of slow-atom collisions has been pre-
sented with special emphasis on the effects of nuclear spin
statistics and atomic fine and/or hyperfine structures. It re-
duces to the theory of Stoofet al. @20# for collisions between
alkali-metal atoms in their ground state, and to the theory of
Zygelmanet al. @18# if there are no hyperfine interactions
and if the nuclei are either distinguishable, or indistinguish-
able~in which case the atoms must be in the same electronic
states!. By employing the frame transformation and MQDT
techniques, we arrived at an approximate method which
gives complete information about hyperfine collisions from
much simplerLS coupled orJJ coupled calculations. The
method can be systematically improved upon, and it tells one
where each contribution comes from.

The next natural step is to compare the results obtained by
solving the close-coupling equations in theFF coupled
channels and the results obtained by various approximations
discussed in Sec. II E. Reference pair functionsf 0 andg0 for
1/r n potentials, especially forn56 andn53, also deserve a
closer look.

Getting back to the question of whether a85Rb atom in
the groundF53 state is distinguishable from a85Rb atom in
the groundF52 state, the answer is that it is an ill-posed
question that can be deceiving. If the atoms are given one at
a time ~implying that their wave functions do not overlap!,
one can of course tell which one is inF52 and which one is
in F53. But that is missing the point of indistinguishability.
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The point is that when the wave functions overlap, we cannot
tell which one is inF52. We only know that one of the
atoms is in it and the other one is inF53. Thus the system
of two 85Rb atoms, one inF52 and one inF53, should be
treated as two identical atoms in different component states,
just as the two different spin orientations of an electron. The
same conclusion is, of course, applicable to any two atoms
with the same constituents and in any states. However, for a
system made up of an ion and an atom of the same species
~or ions of the same species but of different charge!, one
needs to think in terms of nuclear statistics.

Finally, it seems clear that the ultimate theory of cold-
atom collisions should be anR-matrix type of approach@35–
40# in which short-range interactions are treated by a com-
plete basis set expansion including both the electronic and
the nuclear degrees of freedom. Close-coupling equations,
such as the ones presented here, are used only beyond a

certainR0 . Such sophistication may not be necessary at high
temperatures, but may be needed for cold collisions due to
their sensitive dependence on the potential.
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APPENDIX A: FRAME TRANSFORMATIONS
AND JJ COUPLING

The frame transformation Eq.~49! is derived by going
throughJJ coupled channel functions, which are defined, for
distinguishable nuclei, by the asymptotic behavior

F
~a1L1S1J1I1!A~a2L2S2J2I2!BJlKI
TMTPT →

R→`

(
all m

^J1M1 ,J2M2uJMJ&^JMJ ,lml uKMK&

3^KMK ,IM I uTMT&ua1L1S1J1M1&Aua2L2S2J2M2&BYlml
~u,f!u~ I 1!A~ I 2!BIM I&,

~A1!

where all magnetic quantum numbers are quantized along a space-fixed axis. From Eq.~8!, it can be shown that theJJ coupled
channels functions can be written in terms of the quasimolecular states as

F
~a1L1S1J1I1!A~a2L2S2J2I2!BJlKI
TMTPT

5@J1 ,J2#
1/2(

LS
(
all m

@L,S#1/2^LML8 ,SMS8uJMJ8&^JMJ ,lml uKMK&^KMK ,IM I uTMT&H L1 L2 L

S1 S2 S

J1 J2 J
J

3DMJMJ8
J*

~f,u,0!Yl iml
~u,f!u~a1L1S1!A~a2L2S2!BLML8~R̂!SMS8~R̂!;R&u~ I 1!A~ I 2!BIM I&. ~A2!

This channel function, to be identified by an indexx, is
related to theLS coupled channel functions@cf. Eq. ~39!#,
identified by the indicesb, by the frame transformation
@9,18,19#

Fx
TMTPT~R!5(

b
Uxb

~T!Fb
TMTPT~R!, ~A3!

where

Uxb
~T!5d l xlbdKxKb

d I xIb~21! l x1Jx1Lb1Sb

3@J1x ,J2x ,Jx ,Lb ,Lb ,Sb#1/2

3H l x Kb Jx

Sb Lb Lb
J H L1 L2 Lb

S1 S2 Sb

J1x J2x Jx
J . ~A4!

An FF coupled channel function@cf. Eq. ~17!#, identified by
the indexi , is related to theJJ coupled channel functions by
a similar frame transformation,

F i
TMTPT~R!5(

b
Uix

~T!Fx
TMTPT~R!, ~A5!

where

Uix
~T!5d l i l xdJ1i J1xdJ2i J2x~21! l i1Fi1Kx1I x

3@F1i ,F2i ,Fi ,Jx ,Kx ,I x#
1/2

3H l i Kx Jx

I x Fi T J H J1i J2i Jx

I 1 I 2 I x

F1i F2i Fi

J . ~A6!

The LS to FF frame transformation is then obtained
through

Uib
~T!5(

x
Uix

~T!Uxb
~T! , ~A7!

which gives Eq.~49!.
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In cases where spin-orbit interaction is significant, the
starting point for the frame transformation and MQDT
method described in Sec. II E is the solution of close-
coupling equations in theJJ coupling. For a collision be-

tween two different atoms or a collision between similar at-
oms with distinguishable nuclei and (a2L2S2)5(a1L1S1),
the potentialVxy

BO that enters into the close-coupling equation
in JJ coupling is determined by

^F~a1L1S1J1xI1!A~a2L2S2J2xI2!BJxl xKxI x

TxMTxPTx uHBOuF
~a1L1S1J1yI1!A~a2L2S2J2yI2!BJyl yKyI y

TyMTyPTy &

5dTxTydMTxMTy
dPTxPTy

dKxKyd I xI y~21!Jx2Jy@J1x ,J2x ,Jx ,l x ,J1y ,J2y ,Jy ,l y#
1/2 (

MLMSLS
@L,S#H L1 L2 L

S1 S2 S

J1x J2x Jx
J

3H L1 L2 L

S1 S2 S

J1y J2y Jy
J S L S Jx

ML MS 2ML2MS
D S L S Jy

ML MS 2ML2MS
D S Jx l x Ky

ML1MS 0 2ML2MS
D

3S Jy l y Ky

ML1MS 0 2ML2MS
D EMLSG~R!. ~A8!

In the case of a collision between two similar atoms with distinguishable nuclei and (a2L2S2)Þ(a1L1S1), there are
additional channels characterized by

F
~a2L2S2J2I1!A~a1L1S1J1I2!BJlKI
TMTPT 5@J1 ,J2#

1/2(
LSJI

(
all m

@L,S#1/2^LML8 ,SMS8uJMJ8&^JMJ ,lml uKMK&^KMK ,IM I uTMT&

3H L2 L1 L

S2 S1 S

J2 J1 J
J DMJMJ8

J*
~f,u,0!Yl iml

~u,f!u~a2L2S2!A~a1L1S1!B

3LML8~R̂!SMS8~R̂!;R&u~ I 1!A~ I 2!BIM I&. ~A9!

The complete potentialVxy
BO is specified in this case by

^F~a1L1S1J1xI1!A~a2L2S2J2xI2!BJxl xKxI x

TxMTxPTx uHBOuF
~a1L1S1J1yI1!A~a2L2S2J2yI2!BJyl yKyI y

TyMTyPTy &

5dTxTydMTxMTy
dPTxPTy

dKxKyd I xI y~21!Jx2Jy@J1x ,J2x ,Jx ,l x ,J1y ,J2y ,Jy ,l y#
1/2 (

MLMSLS
@L,S#H L1 L2 L

S1 S2 S

J1x J2x Jx
J

3H L1 L2 L

S1 S2 S

J1y J2y Jy
J S L S Jx

ML MS 2ML2MS
D S L S Jy

ML MS 2ML2MS
D S Jx l x Ky

ML1MS 0 2ML2MS
D

3S Jy l y Ky

ML1MS 0 2ML2MS
D 1

2
@EMLSagLa

~R!1EMLSauLa
~R!#, ~A10a!

^F~a2L2S2J2xI1!A~a1L1S1J1xI2!BJxl xKxI x

TxMTxPTx uHBOuF
~a2L2S2J2yI1!A~a1L1S1J1yI2!BJyl yKyI y

TyMTyPTy &

5~21!J1x1J2x1Jx1J1y1J2y1Jy^F~a1L1S1J1xI1!A~a2L2S2J2xI2!BJxl xKxI x

TxMTxPTx uHBOuF
~a1L1S1J1yI1!A~a2L2S2J2yI2!BJyl yKyI y

TyMTyPTy &,

~A10b!
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^F~a1L1S1J1xI1!A~a2L2S2J2xI2!BJxl xKxI x

TxMTxPTx uHBOuF
~a2L2S2J2yI1!A~a1L1S1J1yI2!BJyl yKyI y

TyMTyPTy &

5dTxTydMTxMTy
dPTxPTy

dKxKyd I xI yP1P2~21!N1N21J1y1J2y2Jx@J1x ,J2x ,Jx ,l x ,J1y ,J2y ,Jy ,l y#
1/2

3 (
MLMSLS

@L,S#H L1 L2 L

S1 S2 S

J1x J2x Jx
J H L1 L2 L

S1 S2 S

J1y J2y Jy
J S L S Jx

ML MS 2ML2MS
D S L S Jy

ML MS 2ML2MS
D

3S Jx l x Ky

ML1MS 0 2ML2MS
D S Jy l y Ky

ML1MS 0 2ML2MS
D 12 @EMLSagLa

~R!2EMLSauLa
~R!#. ~A10c!

For a collision between two atoms with identical nuclei, a
JJ coupled channel function with proper symmetry under the
exchange of nuclei is

F
$a1L1S1J1I1 ,a2L2S2J2I1%JlKI
TMTPT ~R!

5CJJ@F
~a1L1S1J1I1!A~a2L2S2J2I1!BJlKI
TMTPT ~R!

1~21!N1N21J11J22J2I1 l

3F
~a2L2S2J2I1!A~a1L1S1J1I1!BJlKI
TMTPT ~R!#, ~A11!

where

CJJ5$2@11d~a2L2S2J2 ,a1L1S1J1!#%
21/2

is a normalization constant.
From Eq.~A11!, it is clear that if

~a2L2S2J2!5~a1L1S1J1!,

only states satisfying

J1I1 l5even ~A12!

are possible. This is true regardless of whether the nuclei are
fermions or bosons.

The potentialVxy
BO for the case of identical nuclei is there-

fore

^F$a1L1S1J1xI1 ,a2L2S2J2xI2%Jxl xKxI x

TxMTxPTx uHBOuF
$a1L1S1J1yI1 ,a2L2S2J2yI2%Jyl yKyI y

TyMTyPTy &

52Cx
JJCy

JJ@^F~a1L1S1J1xI1!A~a2L2S2J2xI2!BJxl xKxI x

TxMTxPTx uHBOuF
~a1L1S1J1yI1!A~a2L2S2J2yI2!BJyl yKyI y

TyMTyPTy &

1~21!N1N21J1y1J2y2Jy2I y1 l y^F~a1L1S1J1xI1!A~a2L2S2J2xI2!BJxl xKxI x

TxMTxPTx uHBOuF
~a2L2S2J2yI1!A~a1L1S1J1yI2!BJyl yKyI y

TyMTyPTy &#, ~A13!

where the matrix elements on the right-hand side are given
by Eq. ~A10! for (a1L1S1)Þ(a2L2S2), and by Eq.~A18!
for (a1L1S1)5(a2L2S2).

TheLS to JJ frame transformation for identical nuclei is

U $x%$b%
~T! 5~Cx

JJ/Cb
LS!Uxb

~T!5$11d~a2L2S2 ,a1L1S1!

3@12d~J2x ,J1x!#%
1/2Uxb

~T! .
~A14!

The JJ to FF frame transformation for identical nuclei is

U $ i %$x%
~T! 5~Ci

FF/Cx
JJ!Uix

~T!5$11d~a2L2S2J2i ,a1L1S1J1i !

3@12d~F2i ,F1i !#%
1/2Uix

~T! .
~A15!

TheJJ coupled channel functions diagonalize the asymp-
totic spin-orbit interactions, i.e.,

Vxy
f →

R→`

DEx
fdxy , ~A16!

whereDEx
f is the total fine-structure splitting for the two

atoms. The asymptotic hyperfine interactions are, however,
not diagonalized inJJ coupling. Specifically,

Vxy
h f →

R→`

(
i
Uix

~T!DEi
h fUiy

~T! , ~A17!

whereDEi
h f is the total hyperfine splitting for the two atoms

in a fragmentation channeli , in which the asymptotic hyper-
fine interactions are diagonalized.Uix

(T) is theJJ to FF frame
transformation given by Eqs.~A6! and ~A15!.
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A question that naturally arises here is why the spin-orbit
interaction is not included in our definition of the adiabatic
Hamiltonian, which seems to be the reasonable thing to do,
especially if the spin-orbit interaction is strong. Such a
theory can indeed be established. It is not presented here
because of some subtleties associated with nonadiabatic cou-
pling effects.

By starting from anLS coupled molecular basis, one can
ignore the nonadiabatic coupling if theLS coupled molecular
potentials have no avoided crossing or if the crossings occur
only at small internuclear distances where the atoms are un-
likely to be. This is the case at least for collisions between
alkali-metal atoms in their ground state. The nonadiabatic
couplings due to spin-orbit and hyperfine interactions are left
to be treated by solving the close-coupling equations in the
proper fragmentation channels. But a similar condition is not
satisfied if one starts from aJJ coupled molecular basis set.
To treat the nonadiabatic coupling rigorously in this case,
one needs to carefully take into account the subtle difference
between one- and two-center rotations, as pointed out in the
important work of Zygelmanet al. @18#. Even though their
work may be equivalent to previous theories when nonadia-
batic coupling is ignored, it is expected to lead to different
nonadiabatic coupling terms. This issue deserves further ex-
amination in the future.

APPENDIX B: SCATTERING BOUNDARY CONDITIONS
AND CROSS SECTIONS

Owing to the new features introduced by identical nuclei,
we give here a brief discussion of scattering boundary con-

ditions and the related cross section formulas.
The wave function having proper scattering boundary

conditions is constructed in a standard fashion out of solu-
tions which define the physicalK matrix. First, a proper
linear superposition of these functions gives a set of solu-
tions that defines theT matrix:

c i
TMTPT →

R→`

(
jPo

F j
TMTPTH 1

kjR
sin~kjR2 l jp/2!d j i

1
eik jR

R
@2~2 i ! l jpkj

21/2Tji
~T!~E!ki

21/2#J ,
~B1!

where

T~T!~E!5~22p i !21@S~T!~E!2I #, ~B2!

in whichS(T)(E) is given by Eq.~22! andI is a unit matrix.
In terms of this set of solutions, the wave function with a
proper scattering boundary condition is given by

c5 (
Fi l iTMFml

i l iYl iml
* ~ k̂i !^F1iM1i ,F2iM2i uFiMF&

3^FiMF ,l iml uTMT&c i
TMTPT . ~B3!

In the case of nonidentical nuclei, the asymptotic form of
c is rather standard and leads to Eqs.~23! and ~24!.

For identical nuclei, we obtain from Eqs.~34! and ~16!

c →
R→`

Ci
FF@ ua1L1S1J1i I 1F1iM1i&Aua2L2S2J2i I 1F2iM2i&Be

iki•~RA2RB!

1~21!N1N212I1ua2L2S2J2i I 1F2iM2i&Aua1L1S1J1i I 1F1iM1i&Be
iki•~RB2RA!]

1(
j

eik jR

R
Cj
FF@ f ~ i→ j ,k j !ua1L1S1J1 j I 1F1 jM1 j&Aua2L2S2J2 j I 1F2 jM2 j&B

1~21!N1N212I1f ~ i→ j ,2k j !ua2L2S2J2 j I 1F2 jM2 j&Aua1L1S1J1 j I 1F1 jM1 j&B], ~B4!

which gives Eq.~37!. Note that both terms in the incoming
part of this wave function describe thesamephysical state in
which an atom in stateua1L1S1J1i I 1F1iM1i& is moving in
the center-of-mass frame with momentum\k i , and an atom
in state ua2L2S2J2i I 1F2iM2i& is moving in the center-of-
mass frame with momentum2\k i . The only difference is
that we have labeled the two atoms differently, i.e., they
have been exchanged. The amplitudesf ( i→ j ,k j ) and
f ( i→ j ,2k j ) interfere with each other because they are the
amplitudes for scattering into thesamestate in which an
atom in stateua1L1S1J1 j I 1F1 jM1 j& is moving in the center-
of-mass frame with momentum\k j , and an atom in state
ua2L2S2J2 j I 1F2 jM2 j& is moving in the center-of-mass frame
with momentum2\k j .

APPENDIX C: PROPERTIES OF f 0 AND g0

For the sake of completeness, we summarize here proper-
ties of f 0 andg0 as defined by Eq.~51! for short-range po-
tentials. They are used in the derivation of the effective range
Eq. ~54!. Refer to@24,25,28# for more details and for refer-
ence pair functions defined for other potentials.

f i
0(e i) and gi

0(e i) are both analytic functions of energy
e i . This is easily verified through series expansions ofj l and
yl @44#, from which it is to be observed thatf 0 andg0 de-
pend onk only through powers ofk2, which is proportional
to energy.

The behavior off 0 and g0 at smallR is characterized
by
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f i
0~e i ! →

R→0 1

~2l i11!!!
Rl i11, ~C1!

gi
0~e i !→

R→
2

1

2l i11
~2l i11!!!R2 l i. ~C2!

Their behavior at largeR is characterized by

f i
0~e i ! →

R→`

ki
2 l i21sin~kiR2 l ip/2!,e i.0, ~C3!

f i
0~e i ! →

R→`

k i
2 l i21

@ek iR2~21! l ie2k iR#,e i,0, ~C4!

gi
0~e i ! →

R→`

2ki
l icos~kiR2 l ip/2!,e i.0, ~C5!

gi
0~e i ! →

R→`

2k i
l i@~21! l iek iR1e2k iR#,e i,0. ~C6!

Finally,

W~ f i
0 ,gi

0![ f i
0gi

082 f i
08gi

051. ~C7!

@1# P. S. Julienne, A. M. Smith, and K. Burnett, Adv. At. Mol.
Opt. Phys.30, 141 ~1992!, and references therein.

@2# T. Walker and P. Feng, Adv. At. Mol. Opt. Phys.34, 125
~1994!, and references therein.

@3# M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman,
and E. A. Cornell, Science269, 198 ~1995!.

@4# G. F. Gribakin and V. V. Flambaum, Phys. Rev. A48, 546
~1993!.

@5# T. Walker and D. Pritchard, Laser Phys.4, 1085~1994!.
@6# A. Gallagher and D. E. Pritchard, Phys. Rev. Lett.63, 957

~1989!.
@7# A. J. Moerdijk, W. C. Stwalley, R. C. Hulet, and B. J. Verhaar,

Phys. Rev. Lett.72, 40 ~1994!.
@8# R. Cote, A. Dalgarno, and M. J. Jamieson, Phys. Rev. A50,

399 ~1994!.
@9# D. C. S. Allison and P. G. Burke, J. Phys. B2, 941 ~1969!.

@10# R. G. H. Reid and A. Dalgarno, Phys. Rev. Lett.22, 1029
~1969!.

@11# R. G. H. Reid, J. Phys. B6, 2018~1973!.
@12# F. H. Mies, Phys. Rev. A7, 942 ~1973!.
@13# J. M. Launay and E. Roueff, J. Phys. B10, 879 ~1977!.
@14# C. Harel, V. Lopez, R. McCarroll, A. Riera, and P. Wahnon, J.

Phys. B11, 71 ~1978!.
@15# S. J. Singer, K. F. Fried, and Y. B. Band, J. Chem. Phys.79,

6060 ~1983!.
@16# E. E. Nikitin and S. Ya. Umanskii,Theory of Slow Atomic

Collisions ~Springer-Verlag, Berlin, 1984!.
@17# F. H. Mies, J. Chem. Phys.80, 2514~1984!; F. H. Mies and P.

S. Julienne,ibid. 80, 2526~1984!.
@18# B. Zygelman, A. Dalgarno, and R. D. Sharma, Phys. Rev. A

49, 2587~1994!.
@19# B. Zygelman, A. Dalgarno, and R. D. Sharma, Phys. Rev. A

50, 3920~1994!.
@20# H. T. C. Stoof, J. M. V. A. Koelman, and B. J. Verhaar, Phys.

Rev. B38, 4688~1988!.
@21# E. Tiesinga, B. J. Verhaar, and H. T. Stoof, Phys. Rev. A47,

4114 ~1993!.
@22# P. S. Julienne and F. H. Mies, J. Opt. Soc. Am. B6, 2257

~1989!.
@23# R. Cote and A. Dalgarno, Phys. Rev. A50, 4827~1994!.
@24# C. H. Greene, U. Fano, and G. Strinati, Phys. Rev. A19, 1485

~1979!.

@25# C. H. Greene, A. R. P. Rau, and U. Fano, Phys. Rev. A26,
2441 ~1982!.

@26# M. J. Seaton, Rep. Prog. Phys.46, 167 ~1983!.
@27# C. H. Greene and Ch. Jungen, Adv. At. Mol. Phys.21, 51

~1985!.
@28# U. Fano and A.R.P. Rau,Atomic Collisions and Spectra~Aca-

demic Press, Orlando, 1986!.
@29# A. R. P. Rau and U. Fano, Phys. Rev. A4, 1751~1971!.
@30# C. M. Lee and K. T. Lu, Phys. Rev. A8, 1241~1973!.
@31# C. M. Lee, Phys. Rev. A11, 1692~1975!.
@32# K. T. Taylor and D. Norcross, Phys. Rev. A34, 3878~1986!.
@33# L. Kim and C. H. Greene, Phys. Rev. A36, 4272~1987!.
@34# M. J. Jamieson, A. Dalgarno, and J. N. Yukich, Phys. Rev. A

46, 6956~1992!.
@35# U. Fano and C. M. Lee, Phys. Rev. Lett.31, 1573~1973!.
@36# P. G. Burke and W. D. Robb, Adv. At. Mol. Phys.11, 143

~1975!.
@37# C. H. Greene, Phys. Rev. A28, 2209~1983!.
@38# C. H. Greene and L. Kim, Phys. Rev. A36, 2706 ~1987!; L.

Kim and C. H. Greene,ibid. 36, 4272~1987!; 38, 2361~1988!.
@39# M. Aymar, E. Luc-Koening, and S. Watanabe, J. Phys. B20,

4325 ~1987!; M. Aymar, ibid. 20, 6507~1987!.
@40# L. Kim and C. H. Greene, Phys. Rev. A38, 5953~1988!.
@41# See the discussion at the end of Appendix A.
@42# Fragmentation channels refer to channels in which long-range

interactions are diagonalized.
@43# Condensation channels refer to channels in which short-range

interactions are~approximately! block diagonalized. See Sec.
II D.

@44# Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun, U.S. Natl. Bur. Stand.~GPO,
Washington, DC, 1964!.

@45# E. Wigner and E. E. Witmer, Z. Phys.51, 859 ~1928!.
@46# P. Pechukas and R. N. Zare, Am. J. Phys.40, 1687~1972!.
@47# It is important to remember that Eq.~7! also serves to define a

phase convention in which the electrons associated with the
nucleusA are labeled 1 throughN1 ~or N2 if atomA is in state
ua2L2ML2S2MS2&), and the electrons associated with the
nucleusB are labeledN111 ~or N211 if atom A is in state
ua1L1ML1S1MS1&) throughN11N2 . This convention, or any
other convention one might like to choose, has to be main-
tained consistently.

2038 54BO GAO



@48# A good discussion of the symmetry properties of the two-atom
and their corresponding molecular states can be found in@16#.

@49# The phase factor in Eq.~11! comes about due to the reversal of
the quantization axis.
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