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The variationally stable procedure for Nth-order perturbative-transition-matrix elements intro-
duced by the authors [Phys. Rev. Lett. 61, 404 (1988)] is presented here in detail. Its key features
are that it is noniterative, involves only two unknown functions regardless of the value of N, is
stable even near intermediate-state resonances (due to the presence of energy numerators rather
than energy denominators), and uses the inverse of the perturbation operator for N 2 3. Explicit for-
mulas are presented for application to high-order multiphoton processes in atomic hydrogen. Nu-
merical results for multiphoton-ionization cross sections (for two, three, and seven photons), for the
frequency dependence of the nonlinear susceptibilities for harmonic generation (for the third, fifth,
and seventh harmonics), and for harmonic-generation transition rates up to 11th order for A= 1064
nm are presented for the atomic hydrogen ground state and compared with results of others by
more standard procedures. We also present detailed analyses of the Z scaling of our results for hy-
drogenic systems, of the use of the imaginary part of the appropriate 2N-photon nonlinear suscepti-
bility to obtain N-photon-ionization cross sections, and of the relation of the variational principle
presented here to variational principles for scattering processes of Nuttall and Cohen [Phys. Rev.
188, 1542 (1969)] and of Schwinger [Phys. Rev. 72, 742 (1947)].
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I. INTRODUCTION

The accuracy and utility of using variational principles
for the calculation of quantities of physical interest are
well known.! While their use is common for scattering
processes in order to obtain reliable approximations to
the relevant transition-matrix amplitudes,2™* their use is
rare® for processes which are perturbative and of high or-
der, as is often the case with multiphoton processes. For
an Nth-order perturbative process, the major difficulty
comes in summing over N — 1 complete sets of intermedi-
ate states. Alternatively, use of the Dalgarno-Lewis pro-
cedure® reduces the problem formally to the solution of
N —1 coupled inhomogeneous differential equations. For
photon energies near intermediate-state resonances, the
numerical accuracy of either method is often significantly
reduced. In addition to these formal aspects, recent ab
initio calculations”® of two-photon-ionization Cross sec-
tions for rare-gas atoms and their isoelectronic ions have
shown that in such multielectron systems electron-
correlation effects play a major role in the multiphoton
ionization process. Quantifying that role accurately for
the high-order multiphoton processes studied experimen-
tally is a major theoretical challenge. Clearly, then, there
are many aspects of the theoretical description of Nth-
order perturbative processes (and of multiphoton process-
es in particular) which would benefit from a formulation
that is designed to have variational stability.

__We pré?ehf 1r;Sec Ia variationally stable formulation
“for an Nth-order perturbative process which addresses

the major difficulty in evaluating higher-order ampli-
tudes, namely, the summation over infinite numbers of in-
termediate states. Our expression for such amplitudes is
variationally stationary with respect to deviations of the
approximations to these summations from the exact re-
sults. Furthermore, our formulation avoids the introduc-
tion of energy denominators; hence, there are no singu-
larities due to these denominators near intermediate-state
resonance energies to affect the numerical accuracy of
our results.

The key feature of our variational formulation for per-
turbative processes of third order and higher is the intro-
duction of the inverse of the perturbation operator. This
inverse operator requires a separate theoretical analysis
for each perturbative process studied. Multiphoton pro-
cesses for the hydrogen atom represent the general case
of a one-electron perturbation operator acting on a one-
electron system. This case may be treated analytically.
We do so for multiphoton processes for H and other hy-
drogenic systems in Sec. III. Applications of the formu-
lation in Sec. III to the calculation of the second-, third-,
and seventh-order multiphoton ionization cross sections,
the linear susceptibility, the third-, fifth-, and seventh-
order nonlinear susceptibilities, and the third-, fifth-,
seventh-, ninth-, and 1lth-order harmonic-generation
transition rates in atomic H are presented in Sec. IV.
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In Sec. V, we give a brief discussion of the relation of II. VARIATIONALLY STABLE FORMULATION
the present variational principle to well-known variation- FOR AN Nth-ORDER PERTURBATIVE PROCESS

al principles for scattering processes,>”* and discuss oth-
er future applications of the present method. Finally, in
Sec. VI we present some conclusions on the applications Consider a perturbation operator D, which acts on
we have carried out so far for multiphoton processes. A some system and induces an Nth-order transition from an
brief description of this variational principle and its ap-  initial state i to a final state f, which is not necessarily
plications to two- and three-photon-ionization cross sec-  different from state i. The Nth-order transition ampli-
tions in atomic H has been given elsewhere.’ tude may be written '

A. Standard procedures for Nth-order perturbations

i) , ' ()
~

where the energies E(n), 1 <n <N —1, are appropriately  These states may be evaluated as the solutions of the fol-
chosen for the particular perturbation. Thus, for a time- lowing N —1 coupled, inhomogeneous Schrodinger-type
independent perturbation, E(n)=E,, where E; is the equations (with suitable boundary conditions):’

zeroth-order energy of the initial state i. For a harmonic,

1 1 1
DE(N—I)—HD DE(Z)—HDE(l)—H

w=(r D

time-dependent perturbation of frequency w, such as [E(M—HIM)=Dli) (a)
when D represents the electric dipole operator as in mul- [E(2)—H]|AM2))=D|A1)) , (5b)
tiphoton processes, E (n) will generally depend on w. For
example, if Eq. (1) represents the amplitude for an N- [E(N—D—H]IMN —1))=DIAN —2)) . (5¢)
photon absorption process, then
. . Solution of Egs. (5a)-(5¢) sequentially to obtain the state
E(n)=E;tno . @) |MN—1)) then permits one to calculate the transition

Equation (1) is, of course, written in operator form. Nu- amplitude in Eq. (1) as

merical evaluation of Eq. (1) normally requires an explicit

representation for the Green’s-function operators. If ex- Ti(ﬁ)fE(f [DIMN —1)) . (6)
panded in terms of the complete set of eigenstates of the
Hamiltonian H, for example, then

ORI S
E(n)—H §l1>E(n)—Ej<]|' ®

Clearly, the need for explicit summations over intermedi-
ate states is avoided in this method. However, since the
solution of each equation, except the last, becomes the
source term for the next equation, any errors (or approxi-
Clearly, this method of evaluation of Eq. (1) results in  mations to the exact solutions) therefore propagate to
N —1 generally infinite summations over intermediate  higher equations. Additionally, in practice one finds that
states. When the exact solutions of H are not used to  the accuracy of the solutions of the differential equations
represent the Green’s-function operator, then numerical  is reduced near any zeros of the operators [E (n)—H]
accuracy is often compromised. since the homogeneous solutions of the differential equa-
An alternative procedure for evaluation of Eq. (1) is  tion then must be dealt with.

that of Dalgarno and Lewis.*° Briefly, one defines the

following N —1 states: ‘

1 .

A1) = mD li), (4a) B. Variationally stable formulation

_ 1 In the Dalgarno-Lewis procedure,® Eq. (6) is not the
M2))= E(2)— HD v, (4b) only form for the transition amplitude defined in Eq. (1).

1 Note firstly that from Eq. (4), the state |A(N —1)) may
)= ~2)) . defi
IMN =) =g ==y PIMN —2)) (4c)  be defined as
1

AN —1)) = —— : L L

D=8 Pro—mPE0—m?" - | @

In a similar way, we may alternatively define a state ( (N —1)] as follows:
_ 1 5. 1 1 v
e =0I=UPgm——g?  PFo-m E0-H °

Then just as the transition amplitude may be defined in terms of |A(N —1)) as in Eq. (6), we may alternatively write it
as

(8)
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TN =( N -1|Dli) . . | )
Additionally, if we formally manipulate Eq(7)}c; obtain L
Y= —H1L B -1 L L —1)— - ,
D|iY=[E(1) H]‘D[E(Z) H]D DIE(N 1) H]I_&(N 13),__ - (10)
then its substitution into Eq. (9) yields a third expression for the transition amplitude:
T = (N = DILE()~ IS EQ)=H]5s - E(N = D=HIAMN 1) . (a

Finally, the three equivalent forms for the transition.ar-npli.tude in Egs. (6), (9), and (11) may vbe combined to obtain

TN, =(fIDIMN — 1)) +{u(N = 1)|D|i)

——(uuv—n

1 —_gL... L —{)— _
[E()-HIS[E@)—H] - BN =1) H]}JL(N 1)}. (12)

Equation 12 is variationally stable with respect to devia- (N =)= (N — D[+ {(du(N -1, (13b)
tions of the states [A(N —1)) and {(u(N —1)| from their
exact expressions, denoted by ]KCX(N —1)) and

N —1)|. That is, if we defi and substitute in Eq. (12), we obtain [upon use of Eq. (10)
(o ! AL, i We detihe : for |A4(N—1)) and of a similar equation for
IMN — 1)) =[A (N —1))+[8MN —1)) , (13a)  {ue(N —1)] that may be derived from Eq. (8)]
R
T}ﬁy=n‘ﬁ}(ex)—<au(N ~1) ([E(l)-H]—é—{E(Z%—H]% - SE(N—1)—H] taxw—n) . (14)

U B,

Equation (14) shows clearly that the deviation of the tran-  determination of the expansion coefficients by application
sition amplitude from the exact result, Tff?f(ex), is of  of the principle of variational stability, replace the stan-

second order in 8y and 8A. In contrast, if Eq. (13a) issub-  dard task of summing N — 1 intermediate sets of states.
stituted in Eq. (6), then ’ Fourth, evaluation of the third form for the transition
. - amplitude on the right-hand side of Eq. (12) is in general
T2y =T;2p(ex) +{fIDISMN 1)} , B - nontrivial due to the appearance of the inverse of the per-
‘turbation operator. How this is accomplished in the case
of perturbative-multiphoton processes in atomic hydro-

~-gen is described in Sec. IIT A.

which shows a linear dependence on SA.

C. Key additional features of Eq. (12) _
1. VARIATIONALLY STABLE FORMULATION

Our variationally stable form for an Nth-order pertur- FOR PERTURBATIVE MULTIPHOTON PROCESSES
bative transition amplitude, Eq. (12), has several addi- IN HYDROGENIC SYSTEMS
tional features which we highlight here. First, though it
employs states of the Dalgarno-Lewis® type, there is no A. Formulation for atomic H
iteration procedure as in the standard procedure described S
in Sec. IIA above. Alternatively stated, our Eq. (12) For a one-electron system such as atomic H, the nu-
makes use of only a pair of functions, u(N —1) and  merical evaluation of the variationally stable form for the
MAN —1), independent of the order N of the process. transition amplitude, Eq. (12), is straightforward. The

77777 g. {12) to evaluate only the radial part of
stable near resonances. Indeed, in contrast to the stan-  the standard form for the transition amplitude, Eq. (1).
dard perturbative expression for the transition amplitude ~ The angular part of the amplitude is evaluated analytical-
in Eq. (1), our Eq. (12) has energy numerators instead of  ly for Eq. (1) by standard techniques, which require no
energy denominators. . discussion here. Indeed, for multiphoton-ionization pro-
Third, Eq. (12) in a sense makes the evaluation of Nth-  cesses in atomic H, formulas for the relevant angular fac-
order perturbative transition amplitudes equivalent in  tors have been presented by Gontier and Trahin.’ Using
effort to that for a first-order transition amplitude.  their notation,” the radial part of the standard form for
Namely, for any order N, attention is focused on the ini-  the multiphoton transition amplitude, Eq. (1), for a tran-
tial and final states, i and f, which are the experimentally sition from a hydrogenic initial state |n;1;) to a hydro-
observed states. Expansions of the two unknown func-  genic final state |n 1 f) by N polarized photons of fre-
tions, A\(N —1) and p(N —1), in terms of some basis, with  quency o is

Second, our Eq. (12) for the transition amplitude is  key is to use
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1 1

Py, ... ,lN_l,lf{co)=<n,1f

As discussed below Eq. (1), E(n), where 1<n <N —1,
must be chosen appropriately for the process under con-
sideration. For a lowest-order, N-photon absorption or
ionization process, Eq. (2) applies. The notation |n,];)
and (n 1 fl denotes only the radial parts of the initial and
final hydrogenic states. The radial part of the transition
operator D in the electric dipole approximation is simply
r; all effects due to the polarization of the photons are
treated analytically in calculating the angular part of Eq.
(1). The set ly,1,,...,1y_, represents one particular set
of intermediate-state orbital angular momenta. The total

]

1 1

"EN=D—rU,_  TE@=h) EM=h,)

r n,-li> . (16)

N-photon transition amplitude is expressed in terms of a
summation over all allowed sets of such angular momen-
ta.’ Finally, the one-electron radial Hamiltonian for a
particular orbital angular momentum / is defined by

h()=—1d*/dr*—1/r+1(+1)/2r% . 17

The derivation of a variationally stable expression for
the radial transition amplitude in Eq. (16) proceeds as in
Sec. II above. In place of Egs. (7) and (8), one defines
now their radial equivalents, A, and p,,

1

1)Y= : , 1), 18

N =D =gy T B -k B =k A 18
1 1

- = 14 DI 4 7 . 19

(N =Dl =Cn gl EN-D=hy_p "E@=h() EM=h(,) 19)
The variationally stable expression for the radial amplitude in Eq. t16) is then

Py, .o Iy lflo)Y=Cnpl e AN = 1))+, (N = Dlrin1;)
—(u,(zvﬂ') [E(1)-—h(l,)]—lr-[E(2)—h(12)]%---—i—[E(N—-l)~h(lN_1)] ?»,(N—l)>,
(20)

which is the radial analogue of the general result in Eq. (12).

B. Z scaling for hydrogenic ions

Any result for an N-photon transition amplitude for
atomic hydrogen may be easily scaled for application to a
hydrogenic ion of nuclear charge Z. One merely takes
note of the following scaling relations for the Hamiltoni-
an, the radial Green’s function, and for bound and con-
tinuum states, respectively,

Hy(rN=ZHy(Zr), (21a)
I -
E(Z)t+qo—Hy(r)
=1 — , -~ (21b)
Z? E(Z=1)+q(w/Z*)—Hy(Zr)
lnl;r)z=2Z32|nl;Zr )y , (21¢)
|El;r) z=ZV2(E/Z);2r )y . (214d)

In Eq. (21) the subscript Z(H) on the kets and on the
Hamiltonian indicates that these correspond to a hydro-
genic system with ionic charge Z (atomic H), n and [ indi-
cate the principal and orbital angular momentum quan-
tum numbers for a bound state,. El represents the
electron’s kinetic energy and orbital angular momentum

for a continuum state, g represents an integer, and o is

the photon frequency.

These properties give the following scaling relations for
bound-bound, bound-continuum, and continuum-con-
tinuum N-photon perturbative transition amplitudes for
hydrogenic ions, respectively:

HAn'l' TV w)|nl ),
2D T T 0/ 2D )

2(ET| T w)|nl) 4
e =z N (B 2O T (w/Z) |0y
(22b)

(22a)

A ET TN ) EL)
=Z 3N E /2 T (0/ZE/Z0)] )y -
(22¢)

In Eq. (22), T'" is the operator defined in Eq. (1) and the
argument in parentheses is the frequency of the photon in
a multiphoton process.

We note that in obtaining the results in Eq. (22) from
the scaling relationships in Eq. (21), it is necessary to
change variables from r to ¢ where t =Zr. This is neces-

sary in order that the radial integrals on the right-hand
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side of Eq. (22) are independent of Z except for the scale
factor shown outside the matrix elements and the change
in energy from w and E on the left-hand side of Eq. (22)
to (@/Z?) and (E /Z?) on the right.

IV. RESULTS FOR PERTURBATIVE MULTIPHOTON

PROCESSES IN ATOMIC H

We present here a number of results for multiphoton
ionization, for nonlinear susceptibilities for harmonic
generdtion, and for harmonic-generation transition rates
in atomic hydrogen to demonstrate the ability of the vari-
ationally stable formulation presented in Secs. IT and III
above to provide accurate numerical predictions. Where
possible we have compared our results with predictions of
others by the more standard techniques described in Sec.
II. The agreement between our results and those of these
more standard procedures is generally excellent. We also
check our variationally stable procedure for  self-
consistency by comparing the results of two alternatlve
calculations for generalized multiphoton cross sections.
The results of the two calculational methods agree very
well.

A. Numerical method

For each radial transition amplitude in Eq. (20) to bé

evaluated, we expand the unknown functions A, (N —1)

and u,(N —1) in Slater orbitals, as follows:
M
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7 ~ where the Slater orbitals are defined by

$;(r) =N‘r1"“+je'5’, (24a)

0,(n=N;r" eor, (24b)

where N and N j' are normahzatlon constants and where

.—fBis an arbltrary constant which is chosen heuristically

for each calculation and which may be complex. Oc-
casionally, functions having different values of 5 are em-
ployed in the expansions in Eq. (23). In many cases, how-
ever, a single value for 3 suffices and hence, for simplicity
of notation, we shall only consider this case explicitly.

Substitution of Eq. (23) into Eq. (20) gives an expres-
sion for P(1,15, ...,y l,lfla) in terms of radial matrix
elements for Slater orbitals, which may be evaluated
analytically. Requiring variational stability of P with
respect to the expansion coefficients ¢; and b, i.e., setting
for each j,

8P _ 9P

da; 9b;

=0, (25)

one obtains the following set of equations for the expan-

- sion coefficients:

(26a)

ZAU] Ci»

i=1

(26b)

AN —1)r E a;$,(r) (232) ___where the radial matrix elements involving the Slater or-
bitals (and also the initial and final radial wave functions,
(N —1)(r)= z (23b) (r{nil,-r) and (r|n;l;}) have l?een defined by
] /V ]
A,.j=<oi [E (=R E@)=h()] - -i—[E(N—l)—h(lN_,)]'tﬁj-) : (272)
¢;={8,lrln1;) | @7b)
d,=(n,llrlg;) @27c)

For the fourth through 12th-order processes presented
below, the sizes of our calculations may be described as
follows. In calculating the nonlinear susceptibilities,
M =40 and only a single value for 8 is employed. For the
seven-photon partial ionization cross section, we em-
ployed four values of 3, each having an expansion involv-
ing M =30 functions. In all cases our results converged
to at least four significant digits, as tested by increasing
the number of functions M. This excellent convergence
was obtained even near intermediate-state resonances (al-
though a signiﬁcant deterioration was found for inter-
mediate energies falling into the high- Rydberg region or

in the continuum).
|

oM /I Y= |22 ¥rlaw(2+1)71 S T,

If,mf,m‘.

a5
!

[ .

Lastly we note that the major practical impediment to
calculations of Nth-order perturbative matrix elements by
this method, as by any other method, is simply the in-
crease in the number of pathways [and hence in the num-

“ber of radial amplitudes in Eq. (20)] by which the transi-

tion proceeds from the initial to the final state as N in-
creases.
B. Resuits for multiphoton ionization of H(1s)

The generalized cross section'® for multiphoton ioniza-
tion of a state |i ) in atomic hydrogen by N photons lead-
ing to a final state { f'| may be written

(28)




The generalized cross section on the left hand side of Eq.
(28), which has units of cm*¥/wWH¥ 1 , is given by an ex-
pression on the right-hand side which is independent of
the hght intensity I. The ordinary cross section, denoted
), has units of cm? and depends on I i ln lowest order
perturbatlon theory through the factor IV ™!, where I is
in units of W/cm?. On the right-hand side, o is the fine-
structure constant, w is the photon frequency, /; (/;) and
m; (my) are the electron’s initial (final) -state orbital an-
gular momentum and magnetic quantum numbers. The
amphtude T,(_’!) has been defined generally in Eq. (1),
where D is the electric dipole operator for a particular
light polarization. All of our calculations are done in
atomic units (e=#=m,=1) using the expression in the
first set of parentheses on the rxght~hand side in Eq. (28).
To convert to the units cm® /WY ! we employ the con-
version factor in the second set of parentheses on the
right-hand side in Eq. (28) where a, the atomic unit of
length, is the Bohr radius in centimeters, and where [,
the atomic unit of intensity, is equal to 7.019X 10
W/cm?.
We have given extensive comparisons of our predic-
tions for two- and three-photon ionization cross sections
for H(1s) with results of other authors in Ref. 5. In those

comparisons,” we agree consistently with predictions of

Karule!! for two-photon ionization, both above and

below the single-photon ionization threshold. In order to
test the accuracy of our variationally stable method of
calculation for much higher-order processes, therefore,
we again make comparisons with results of Karule,'?
which are conveniently presented in tabular form.
Karule’s results'? are obtained by employing a Sturmian
function expansxon for the Green’s functlons in the tran-
sition operator in Eq. (1).

In Table I we compare Karule’s results'? with ours for
the seven-photon ionization of H(ls) to the final state in
which the photaelectron has orbital angular momentum
I;=17. Also given in Table I is an indication of the con-
vergence of our results. For the ten wavelengths shown
for A>5638 A, our results either agree identically with
Karule’s or differ by considerably less than 1%. For the
four shorter wavelengths shown, the differences are some-
what greater, but still range between 0.6% and 2.2%,
which is very good agreement. We conclude therefore
that our variational procedure is applicable with high ac-
curacy to high orders of perturbation well beyond the
second and third order, for which it was originally
presented,’

oM /(TN =2 "Nraw(2l+ 1)1 Im |{i (T

my

il

Nearly all the quantities in Eq. (29) are the same as in Eq.
(28) except that the absolute square of the transition am-
plitude and the sum over final states in Eq. (28) is re-
placed in Eq. (29) by the imaginary part of the nonlinear
susceptibility appropriate for absorption of N photons
followed by emission of N photons in which the energy
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TABLE 1. Partial seven-photon ionization cross section
(cm™/W®) of H(ls) for f—‘7 for linearly polarlzed light.

Sturmlan Present Convergence

A (A expansion method® variational method factor®
6368 5.16X 107177 5.120X 107197 1.0X107°
6205 3.45X 107106 3.463X 10710 77X 10710
6107 7.02X 107106 7.032X 107106 2.5%1078
6020 1.13X 107105 1.137%x 107105 1.5% 1077
5925 1.72X 1071 CLT17X107 1.0X107°
5796 2.62X 107105 2.622X 107198 1.9%X107°
5739 3.04X 10710 3.044X 107108 47%x107°
5716 3.22x10710 3.213X 107105 6.4%x107¢
5676 3.51%X 10710 3.509 X 107105 44X107°
5658 3.64X 10710 3.641X 107105 1.1X10™?
5638 3.78X 107105 3.789X 107195 1.1X107°
5612 3.93X1071% 3.981X1071% 3.8X107°
5602 3.99X107 105 4,059 X 10719 1.8x10™*
5590 4,13X107108 4,156X 10710 5.1X1073
5574 4.34X 107105 4.246X 107105

1.9X107*

*E. Karule, Ref. 12.
bFactor by which present-variational-method results change
upon increasing the size of our basis from 4 X 28 to 4 X 30.

C. Variationally stable complex-basis-expansion method
for multiphoton ionization of H(1s)

It is well known that the single-photon ionization cross
section is proportional to the imaginary part of the
frequency-dependent linear susceptibility.!* This fact has
been employed recently, together with complex-basis-
expansion methods, to calculate total photoionization
cross sections.!* Less well known, perhaps, is the fact
that similar relations hold between the N-photon ioniza-
tion cross sections and the imaginary parts of the corre-
sponding frequency-dependent 2N-photon nonlinear sus-
ceptibilities.’> As a test of the consistency of our varia-
tionally stable method, we calculate two- and three-
photon ionization cross sections for H(1s) by this alterna-
tive method for comparison with our results employing
Eq (28), which have been presented in Ref. 5.

The relation between the generalized cross section!® for
multiphoton ionization by N photons below the N —1
photon ionization threshold and the 2N-photon nonlinear
susceptibility is

)

[E;+(N —1)o] is below the N —1-photon ionization
threshold. In Eq. (29) the operator T'V denotes the
operator inside the matrix element on the right-hand side
of Eq. (1). Clearly, a calculation using Eq. (29) for the,
nonlinear susceptibility is of twice the order of a calcula-
tion employing Eq. (28), in which one calculates the tran-

(29)

N-—1
IO
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sition amplitude. Thus our results by our variationally
stable method applied to Eq. (29) for N =2 and 3 are of
fourth and sixth order, respectively, as compared to our
results for the same processes using Eq. (28), which are of
second and third order.

Comparisons of the two procedures are presented in
Table II for N =2 and in Table III for N =3. One sees in
each case that for the longest wavelengths agreement be-
tween the two alternative procedures is excellent. For
the shorter wavelengths, however, the accuracy of the
complex-basis-expansion meéthod deteriorates. (We know
that our transition amplitude calculations are reliable
from the comparisons with others presented in Ref. 5.)
We understand this deterioration in accuracy of the
complex-basis-expansion method as due primarily to the
increasing energy above threshold of the Nth photon and
not due to the higher order of the calculations. Repre-
sentation of the continuum by discrete basis expansion
techniques is known to be more difficult than the corre-
sponding representation of bound states.

D. Nonlinear susceptibilities for
harmonic generation of light from H(ls)

The nonlinear process of harmonic generation by the
ground state of atomic hydrogen may be described by an
expansion of the induced polarization in odd powers of
the incident electric field,'> !¢ where each term in this ex-
pansion may be written

PO=21"%'9(u)E? (30)

Here P'? is the gth-order polarization, ¥'?() is the gth-
order nonlinear susceptibility for producing the harmonic
of frequency g when the incident electromagnetic wave
has frequency w, E is the incident electric field, and 21~9
is a normalization coefficient.

In general, many processes contribute to each ¥'?' and
hence it is not possible to present a general expression for
X'?. For the third-order (g =3) nonlinear susceptibility,
Ward!? gives diagrams for all four terms which contrib-
ute in his Table VI. All of our calculations are carried
out in atomic units (e =m,=#=1) and then converted
to the more common esu umts, as follows:

x'Pesu)=(ad?t! /e )y P(a.u.) . 31
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TABLE III. Variational calculation of the three-photon ion-
ization cross section (cm®/W?) of H(ls) for linearly polarized
light.

Transition

. amplitude Complex-basis
A (A)  calculation® expansion method®
2600 1.002X 1074 1.010X 10™%
2500 2.948 X 1074 2.914X 1074
2400 7.057X 10746 7.366X 1074
2300 2.641X107% 2235X107Y

*Reference S. This is a third-order calculation employing Eq.
(28).
®Sixth-order calculation employing Eq. (29).

Here a, is the Bohr radius and e is the electron charge.
Our results for the frequency dependence of ¥'9(w) for
g=1,3,5, and 7 are presented in Figs. 1 -4. For ¢ =1, of
course, ‘!’ is the usual linear susceptibility. In each of
the figures, the resonance behavior arising from coin-
~-—cidence of E, +ma (m =integer) with intermediate-state
energy levels E, of hydrogen is clearly seen. In fact,
when such coincidences occur simultaneously in an even
number of intermediate states, the nonlinear susceptibili-
ty fails to change 1ts sign at the resonance, as occurs in
Fig. 3 near A=4860 A at which there is a five- -photon res-
onance of the ground state with the n =4 level as well as

~ a_four-photon resonance of the ground state and the

n =2 level. This coincidence, of course, only occurs in
hydrogen.

Another interesting feature of the susceptibilities
shown in Figs. 1-4 is whether or not they change sign be-
tween resonances. For example, in Fig. 1 for the linear
susceptibility, there is always a change in sign between
resonances as the photon energy increases and E |, +o
passes from just greater than E, to just less than E, +1 for

n=23,.... In Figs. 2-4, however, above the n =2
resonance with E 1s Tqo, the susceptibilities ¥'?(w) stay

10X10-241 T T T T T B

iy | S : H ]

TABLE II. Variational calculation of the two-photon ioniza- F 1

tion cross section (cm*/W) of H(1s) for linearly polarized llght - N .

‘Transition r 1

amplitude Complex-basis - -

A (A calculation® expansion method® C ]

1700 1.025X 1077 1.025X 1073 - ]

1600 9.153%x107% 9.162X107% C ]

1400 8.451x 103 8473X107% o - :
1300 1.276x10™% t290x10°% 4 L . Ll - L
1200  6441X10°2 7134x10°% ol o 1400

*Reference 5. This is a second-order calculation employmg Eq.
(28). ]
®Fourth-order calculation employing Eq. (29).

“TiTT WAVELENGTH (A)

"FIG. 1. Linear susceptibility (in esu) of atomic hydrogen for
wavelengths 900 A < k < 1500 A.
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FIG. 2. Third-order nonlinear sousceptibility gin esu) of atom-
ic hydrogen for wavelengths 2800 A <A <4000 A.

negative until above the n =3 resonance with E +qo.
These behaviors may be understood by a rather detailed
examination, which we do not present here, of the dom-
inant contributions to ‘9 near each of the resonances.
One should note for the purpose of this examination that
the radial matrix elements for electric dipole transitions
in atomic hydrogen are known to be positive definite as
long as initial and final states have different principal
quantum numbers.’® On the other hand, these radial ma-
trix elements are negative definite, with value'®

(nlxllrinl)=—3n(n?=12 Y12, (32)

when the principal quantum numbers are the same.

E. Transition rates for harmonic generation of
light from H( 1s) for A=1064 nm

The transition rate (in units of sec™!) for harmonic
generation of wavelength A,/q induced by incident radia-
tion of wavelength A, is

W(q)___(3ﬁ)—l(2,n.q/}\‘0)3“)(0)!2 . _ (33)

2X10 —

H

-t

At

FIFTH-ORDER, NONLINEAR
SUSCEPTIBILITY (esu)
o

PR WU SRR S T .

5000 5500 6000
WAVELENGTH (R)

FIG. 3. Fifth-order nonlinear susceptibilit)o' (in esu) of atomic
hydrogen for wavelengths 4700 A<1<6400 A.

7000 7500 8000 8500
WAVELENGTH (&)

FIG. 4. Seventh-order nonlinear susceptibility (in esu) of
atomic hydrogen for wavelengths 6700 A <A <8700 A.

When P(q) is substituted from Eq. (30) and E? is written
in terms of the intensity I of the incident light,

E’=8nl/c, (34)

then W'? may be expressed in terms of the nonlinear sus-
ceptibility as

W' =(4/3h 2mrq /k0)3(21-rI /e Yl 9)? . (33)

In Table IV we compare our predictions for W'¢ for
incident light of wavelength A,=1064 nm and for in-
cident intensity 7 =3X 10"* W/cm?=3X 10% esu with re-
sults of Potvliege and Shakeshaft.’® These authors have
used standard perturbation methods together with ¢ Stur-
mian basis expansions (one for each of the Green’s func-
tions that occur in the gth-order nonlinear susceptibility).
Our calculations for ¥ employ two Slater-orbital expan-
sions of about 40 functions each to evaluate the appropri-
ate variationally stable radial transition amplitudes in Eq.
(20). We see that for 3<¢ <11, our results agree to
within 0.026% or better with the infinite nuclear mass re-
sults of Potvliege and Shakeshaft.?°

In order to show the trend of harmonic-generation
transition rates with both intensity and harmonic order,
we show in Fig. 5 a plot of log;o(R?), where the ratio
R is defined by

RO=w@ /p® (362)
=(q/3)[2mI(esu)/c(esu)]? 3
X[x'(esu) /x> esu) PP (36b)
=(q/3)[I(a.u.)/4]7 3
X[x'(au)/xaw)P . (36c)

We make this plot for comparison with experimental
measurements of Ferray et al.?! for the relative intensity
of harmonics (compared to the third harmonic) generated
in the rare gases. One sees in Fig. 5 that the steep drop in
the ratio R'? for ¢=5 as compared to ¢=3 is in agree-
ment with the experiments, which were carried out for an
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TABLE IV. Transition rate (sec") for harmomc generation in atomic H [¢y + H(1s)—y'-+H(1s)]
for a laser wavelength A= 1064 nm and laser intensity I =3X 10 W/cm

Sturmlan _expansion method®

Present
Harmonic Finite nuclear Infinite nuclear variational
order ¢ . mass® __mass® __ _ method
3 3.46x10' __ 34273%x10' 3.428 10!
5 7.78X 107! 7.6614X 107! 7.662X107!
7 5351070 5.2092X 107! 5.210%x 107!
9 5.78X 10° 5.7687 X 10* 5.770X 10% .
11 . 521x10° __6.5063X10°  6.508X10°
*Reference 20(a).
PReference 20(b).

[

intensity I=3X10'* W/cm? The plateau found experi-
mentally in the rare gases for ¢ =7 is found in our calcu-
lations for atomic hydrogen at significantly lower intensi-
ties. We caution, however, that use of lowest-order per-
turbation theory becomes unreliable whenever R(9%%
~R'9 since effects of order q +2 are neglected in calcu-
lating R'Y. Nevertheless, the tendency for R to flatten

out for ¢ 27 as I increases is clearly shown in our pertur-

bative results for I=0.5X10"> W/cm? for which
Jowest-order perturbation theory barely holds. For this
intensity, W /W"'=5,29X 10° but w"’/w“”—3 25.

V. DISCUSSION

A. Relation to variational principles
for scattering processes

The variational principle for the Nth-order perturba-

tion matrix element which we have introduced in Ref. 5
and presented in detail in this paper reduces for N =2

0 T T T T T T T T T
e A=1064nm 7
[t
7] = 4
é 5t 1=2x10"wicm? -
£ L R o
Q
5 I=1X10"2 Wicm?2
3 - ~
©
< - R -
T
10 - 1=5X10" wicm? -
o L
s t LT
PN IR SRS SRS ST SR SR
3 5 7 9 11 13 15 17
HARMONIC ORDER )

FIG. s. Logarlthmlc harmonic-generation transition-rate ra-
tio, log;o( W' /W), plotted vs harmonic order g for 3<g <11
for wavelength A=1064 nm. Results for three laser intensities
are shown. The relation of the transition rate ratio
R'Y=W'9 /W™ to the nonlinear susceptibilities is given in Eq.
(36) of the text. ‘

xﬁ%)

(D, 1{1114%,)

(i.e., for second-order processes) to a form analogous to
well-known variational principles for scattering process-
es. We investigate this relationship here. Of course, the
variational principles for scattering processes apply to the
exact transition-matrix elements, whereas above we have
been concerned with the Nth-order perturbative approxi-
mation to the exact transition-matrix element.

We adopt in this section without detailed explanation
the well-known notation of Lippmann and Schwinger®®

for the transition matrix T,, between scattering states a
.and b,

T =07 [H, |®,)=(®, |H, |9, (37)
where '
1
,,,,, lba 0= a(b)+m W) - (38)

Here the ¢'s are exact solutions to the full Hamilton
H=H,+H,, while the ®’s are solutions of the zeroth-
order Hamiltonian H,. Each scattering solution corre-

~ “sponds to the energy E, and the notation * as well as the
- infinitesimal *i€ indicate outgoing or incoming wave

boundary conditions.
In analogy with Sec. II of this paper, deﬁne now for-
mally

A=Y= Pa ) (39)

R iiel_ i, H 5, (40)
Equation (40) implies that

(E—H AT, +H ), . 41)

,W,@ now derive several alternative forms for T,, which
may be combined to yield a variationally stable form for
with respect to changes in the functions A*’ and

Firstly, using Eq. (39) to substitute for ¥’ in the

- second expression for T}, in Eq. (37), we obtain
Tho =tpe +(®y | H,1257)) (42)

where 1, is the zeroth-order transition-matrix element
. Similarly, using Eq. (39) to substitute for
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¥~ in the first expression for T}, in Eq. (37) gives

Ty =ts +(ASIH, [®,) . (43)
Lastly, Eqgs. (39) and (41) allow us to write

Ay NH @)= WE —H) ALY . (44)

Combining Eqgs. (42)-{44) we may write a variationally
stable form T, for the transition amplitude, as follows:

Tha =t5o + (@ | H; A+ (2571 H, [ @,)
—ASTWE —H)ALT . 45)

Equation (45) has been obtained by Nuttall and Cohen?
and is analogous to our Eq. (12) for the special case of a
second-order process (i.e., N =2). As in our calculations,
AL and AL may be expanded in some basis and the ex-
pansion coefficients determined by insisting that Eq. (45)
be variationally stable. This form for T}, has all the key
features of our Eq. (12) that are described in Sec. IIC
above.

Equation (45) may be rewritten in the form of the
Schwinger variational principle for T,, by using Egs.
(39)-(41) to replace A,*’ and AL™). Thus, from Eq. (39),
the first three terms in Eq. (45) may be written as

toe T (@, | H A+ (AT H, )

= — b+ (D | H [P+ (9| H L ®,) . (46)
The last term in Eq. (45) may be written
ATWE — ALY

=ATNE—Ho A=A H ST . @D

The first term on the right-hand side of Eq. (47) may be
rewritten by using Eq. (39) to replace Ay~ and Eq. (41) to
replace (E —Hy)A,™). The second term on the right-
hand side of Eq. (47) may be rewritten by using Eq. (40)
to replace L") and Eq. (39) to replace A, ™). Collecting
these results and using Eq. (38) we obtain

ASTE —HDAST
=y H, 195 — 1y,

_< (=) g 1 5:+)>-
(48)

YE+ie—H, ,
Substitutin% Egs. (46) and (48) into Eq. (45) we obtain the
Schwinger? variational principle for T},

Tho =41 H, (@) +(@, [H [y ) — ([ H, [9)
1

+ (—) _
(W 1H, E-+ie—H,

H |yt . (49)

Comparing Eqs. (45) and (49) we see that Eq. (49) has
four terms containing the (unknown) exact wave func-
tions zpf,i(},) as compared to only three terms involving the

(unknown) exact A’s in Eq. (45). Furthermore, Eq. (49)
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involves the matrix element of an energy denominator as
compared to the matrix element of an energy numerator
in Eq. (45). These differences may have practical compu-
tational consequences.

B. Other applications of the variationally stable
procedure for Nth-order perturbative processes

The key aspect of any extension of the variationally
stable procedure for Nth-order perturbative processes
presented in Sec. II above is the treatment of the inverse
of the perturbation operator. The treatment shown for
multiphoton processes in atomic hydrogen would apply
to any other perturbation in atomic hydrogen, as, for ex-
ample, due to external electric or magnetic fields. Ex-
tending the treatment for such one-body perturbation
operators to nonhydrogenic systems is straightforward as
long as single-electron excitations out of some ground-
state configuration are the only excitations considered. If
multiconfiguration basis states involving possibly two or
more excited electrons are introduced, then care must be
taken to evaluate the inverse operator for each set of
configuration types. Also, for a nonhydrogenic, many-
electron system, it may not be feasible to evaluate the in-
tegrand in the last term in Eq. (12) analytically, even in
some approximate way, in which case the numerical as-
pects of this evaluation become a concern. Certainly,
however, Eq. (12) may be evaluated in second order
(N=2) for any perturbation operator in any system,
since then the last term reduces essentially to a matrix
element of the full Hamiltonian H.

Another extension of our variationally stable pro-
cedure is to the calculation of perturbative amplitudes for
excitations well into the continuum. As illustrated in
Sec. IV C above, this requires the use of complex basis
functions and a larger number of basis functions. How-
ever, Gontier et al.** and Potvliege and Shakeshaft?’
have achieved good convergence of their results by stan-
dard procedures for high orders of perturbation theory
well above the ionization threshold. We anticipate,
therefore, no major obstacles to the use of our variational
method in this region.

V1. CONCLUSIONS

We have given in this paper a detailed presentation of a
variationally stable procedure for Nth-order perturba-
tive-transition-matrix elements that was introduced in
Ref. 5. Among the key features of this procedure are the
absence of Nth-order iterations, the simplicity of having
only two unknown functions regardless of the value of N,
the stability of the procedure even near intermediate-state
resonances (due to the absence of energy denominators),
and the introduction of the inverse of the transition
operator. Detailed expressions for use of this procedure
for high-order multiphoton processes in atomic hydrogen
have been presented. The accuracy of this method has
been demonstrated by calculated results for multiphoton
cross sections, nonlinear susceptibilities, and harmonic-
generation transition rates, which have been shown to be

in excellent agreement with results of more standard cal-
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culations. We have also presented detailed analyses of
the Z scaling of our results for hydrogenic systems, of the
use of the imaginary part of the appropriate nonlinear
susceptibility (together with complex basis functions) to
obtain multiphoton ionization cross sections, and of the
relation of the variational principle presented here for
Nth-order perturbative processes to variational principles

BO GAO AND ANTHONY F. STARACE
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for scattermg processes of Nuttall and Cohen?? and

Schwinger.??
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