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Variational Calculation of Multiphoton Ionization Processes for the H Atom
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Well-known variational principles for second-order perturbation matrix elements are extended to
higher-order multiphoton processes for atomic hydrogen. Numerical applications to two- and three-
photon ionization of the hydrogen ground state provide results comparable to those of analytic calcula-
tions, even near intermediate-state resonances, yet without the complications involved in summation over
intermediate states. Extensions to multiphoton processes for many-electron atoms are discussed briefly.

PACS numbers: 32.80.Rm, 31.15.+q

In calculating Nth-order perturbation matrix elements
(N = 2), such as in higher-than-first-order Born approx-
imations, multiphoton processes, or higher-than-first-or-
der correlation effects, one always encounters the prob-
lem of summing over a complete set of intermediate
states. Use of the Dalgarno-Lewis procedure! reduces
the problem formally to the solution of a set of N —1
coupled inhomogeneous differential equations. However,
the accuracy of the numerical solution of these equations
becomes an increasing concern as N becomes large.
While the use of variational principles to improve this
accuracy has been common for the calculation of many
second-order processes, such as, e.g., frequency-
dependent dipole polarizabilities>* or, more generally,
matrix elements of the Green’s function,’ their use for
higher-than-second-order processes (and for multiphoton
processes in particular®) has been rare.

Consider more specifically the case of multiphoton
processes, for which the numerical evaluation of the
Nth-order transition amplitude is the key problem in
theoretical calculations. For the special case of atomic
hydrogen, numerical methods’ ' based on the Dal-
garno-Lewis procedure' have been complemented by a
number of analytic approaches. Some of these evaluate
the second-order perturbative matrix element analytical-
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FIG. 1. Two-photon ionization cross section (cm*/W) of
H(ls) vs photon wavelengths (A) for photon energies below
the one-photon ionization threshold. Dashed curve, circular
polarization. Solid curve, linear polarization.

ly. 113 Others'*"'® employ analytic expansions of the
Coulomb Green’s function, which permit the evaluation
of higher-order perturbation matrix elements. The
numerical difficulties of the evaluation of multiphoton
transition amplitudes by these methods are well
known.*'%1718 " Furthermore, the often significant dif-
ferences between the predictions of even the analytic cal-
culations for atomic hydrogen do not augur well for ac-
curate theoretical calculations of higher-order processes
for nonhydrogenic systems, although significant recent
theoretical progress has been made for alkali-metal
atoms %1920 and for rare-gas atoms. 2122

We present here a variational principle for the Nth-
order multiphoton transition matrix element for a hydro-
genic system which addresses the major difficulty in
evaluating higher-order amplitudes, namely, the summa-
tion over infinite numbers of intermediate states. Qur
expression for such amplitudes is variationally stationary
with respect to changes in the approximations to these
summations. Numerical applications of this variational
method to the two- and three-photon ionization cross
sections for H(Ls) are presented and compared with the
analytic predictions of others. Extensions of the varia-
tional principle to nonhydrogen systems for a number of
atomic processes are being developed,? but are only dis-
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FIG. 2. Three-photon ionization cross section (cm®/W?2) of
H(1s) vs photon wavelengths (A) for photon energies below
the two-photon ionization threshold. Dashed curve, circular
polarization. Solid curve, linear polarization.
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TABLE I. Two-photon ionization cross section (cm®*/W) of H(ls) for linearly polarized light below the one-photon ionization

threshold.

A (A) CT® KI1® GT® LDFJRY Kve Cpf Kat Present
975 5.152x10~% 4.923x1073 6.773x1073% 491x1073% 4.975x107*
1020 6.752x10™% 5.522x10~3 7.080x1073 5.522x1073¥ 7.08x1073% 7.09%x107% 7.154x1073
1100 4.013x1073% 4.049x1073 4.049x1073 4.035x1073* 4.049%1073 40010733 4.024%x1073
1200 6.303x10732 5803x10732 5.803x10732 6417x10732 5803x10732 6.42x10732% 6.42x10732 6.441%1073
1300 1.276x10732 1283x107%2 1.283x107%% 1.277x1073* 1.283x10~* 1.27x107%2  1.276x10732
1400 8.450x1073% 8.453x107% 8.453%x107% 8.470x1073 8.453x107% 8.45x107% 8.451%x107%
1600 9.154x1073% 9,143x10™3 9.143%x10™% 9.182x1073 9,143x10 3 9.15x107%% 9,153%x10~33
1700  1.025x10732 1,024x10732 1.023x107%2 1.028x10732 1.024%10% 1.03x10732  1.025%x10 32

#Chan and Tang, Ref. 12.
bKlarsfeld, Ref. 13b.
°Gontier and Trahin, Ref. 8.
dLaplanche et al., Ref. 15.

¢Khristenko and Vetchinkin, Ref. 16.
fChang and Poe, Ref. 9.
&Karule, Ref, 14b.

cussed briefly here.

In lowest-order perturbation theory, with use of the electric-dipole approximation, the ionization cross section for
transitions from the initial hydrogenic (bound) state |n/) to the final hydrogenic (continuum) state | EL) by N polar-
ized photons may be expressed in terms of the following radial matrix elements’:

cdv—1, L ho) =(EL|rlE,+ (N —Dho—h(y-1)]1"!
xrlE,+(N—2)ho—hUy-2)1"1r- - rlE,+ o —hU D] "7 |nl.

Pl ..
(n

Equation (1) hides the N — 1 summations over intermediate states by repeated use of the closure relation. 24 In Eq. (D),
| nl) represents the radial wave function and E, represents the energy for the bound state having principal quantum
number n and orbital angular momentum /; (EL | represents the radial wave function for the continuum final state with
electron energy E and orbital angular momentum L; I1,/5, . . . ,In—) represent one particular set of intermediate-state
orbital angular momenta—the total N-photon ionization cross section is expressed in terms of a summation of the
square of the absolute value of the amplitude in Eq. (1) over different sets of 1;°s7; finally, the one-electron radial Ham-
iltonian for a particular orbital angular momentum /; is defined by

(D) =—Yd¥ar?—1/r+L;(+ 1) /2r2 )
Define now the following states:

|M=IE,+ WV —Dho—hUy-)] " rE+WN=Dho—kly-2)1"'r - rlEy+ho—hUD] " lr|al), (3a)

W =ELIrE+WN—Dho—hUy- )" rlE,+ho—RUD] T, (3b)

where |A) ((3']) is the state resulting from (IV—1)-fold excitation (deexcitation) of |nl}) KEL|). In terms of the
states |A) and (1’|, the radial matrix elements in Eq. (1) may be written in three different ways, which may be com-
bined to form the following expression:

-1, L ho)=(EL|r N+ | r|nD
— | [Ep+ho—hUDIr "HE, +2ho—h(I)1r 7!
e r TUE, A (IN—1Dho—hUn-1)1]| ),

Pyl .

4

which is easily seen to be variationally stationary with respect to changes in |A) and {A'|. For two-photon processes,
Eq. (4) reduces to the form of the variational principle developed for the 7T-matrix element for scattering processes by
Nuttall and Cohen.?* In our numerical calculations we represent the states |A) and (1’| as linear combinations of M
Slater functions of the form r *~*?¢ =8 and r hn, ~Fr respectively, where 1 <i =< M. In addition, the function
rN=!nl) is included in |A) and #Y " !'| EL) is included in |A") to speed convergence; they represent the dominating
terms in the asymptotic forms of [A) and |A"). The matrix elements in Eq. (4) are evaluated analytically and the
coefficients of the Slater functions are evaluated by the requirement that Eq. (4) be variationally stationary.
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TABLE II. Two-photon ionization cross section (cm*/W) of
H(1s) for linearly polarized light above the one-photon ioniza-
tion threshold.

A (A) Ki1* Kab Present

200 3.02x10 738 2.990x 103
400 2.15x10 3% 2.156x 1036
600 2.611x1073 2.62%x1073% 2.619x10~%
800 1.572x 103 1.58x10 3 1.577x103

#Klarsfeld, Ref. 13b.

bKarule, Ref. 14b.

For two- and three-photon ionization of H(ls) below
the one- and two-photon ionization thresholds respective-
ly, we used $=0.5 and M =40. Our results converged to
ten or more significant digits for all photon frequencies,
even those quite close to intermediate-state resonances,
with the exception of frequencies approaching the one-
and two-photon ionization thresholds, respectively. For
photon frequencies above the one-photon ionization
threshold in the case of two-photon ionization of H(ls),
we find that more care in choosing the value of 8 is
necessary to obtain adequate convergence. In particular,
B must be chosen to be a complex number.?® In this
case, with M =40, convergence is only obtained to four

“significant figures, although we are still investigating im-
proved numerical procedures for the case of above-
threshold ionization.

Our variational results for the two- and three-photon
ionization cross sections of H(ls) below the one- and
two-photon ionization thresholds respectively, are shown
in Figs. 1 and 2. Numerical values at selected wave-
lengths are compared with the results of others in Tables
I, II, and III. In the two-photon ionization case, our re-
sults in Table I lie within 1% of those of all others for
wavelengths above 1200 A; for wavelengths of 1200 A
and smaller, our results in Tables I and II agree best
with those of Laplanche et al.'> and Karule.!'*® In the
three-photon ionization case, our results in Table III
agree best with those of Laplanche et al.!®

Generalization of the variationally stable amplitude in
Eq. (4) to multielectron atoms is complicated because of
the difficulty of separating angular and radial factors.

" An exception is the special case of two-photon processes,

for which it is not necessary to compute the inverse of
the dipole operator. For higher-order multiphoton pro-
cesses, Eq. (4) may be cast in the form of a perturbation
expansion in the electron correlation operator. Generali-
zation of Eq. (4) for high-order processes mediated by
operators other than the dipole operator is straightfor-
ward. Our work on these topics will be presented else-
where. 2
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