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We show that a many-atom Bose system at zero temperature has, in general, a liquid phase in addition
to its well-known gaseous phase. A universal phase diagram is presented that is applicable to all Bose
systems with a —Cq/r° type of interaction at large interparticle separations. We show that the predicted
phase structure has implications on the stability of a gaseous Bose-Einstein condensate (BEC) even at
dilute densities that are routinely achieved under existing experimental conditions. We also predict that
“He should have a gaseous BEC phase below a critical density of 5.58 X 10'% 1/cm?.
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For decades, our understanding of many-atom quantum
systems has been limited to weak coupling and low density
regimes characterized by paj < 1 and pB} < 1, where
p = N/V is the atomic number density, a, is the s wave
scattering length, and B¢ = (mCgy/h?)"/* is the length scale
associated with the van der Waals interaction, —Cq/r°,
between two atoms. As a result, there have been no general
microscopic quantum theories of liquids beyond those
specific to liquid helium (see, e.g., [1,2]). Even for dilute
Bose gases, the theory has been limited to small scattering
lengths as required by paj < 1 [3,4].

In addition to the intrinsic difficulties associated with a
many-body quantum system, this lack of progress can also
be attributed to the fact that until recently, there has been
no new systematic understanding of atomic interac-
tion beyond the aging effective-range theory [S]. With
the development of the angular-momentum-insensitive
quantum-defect theory (AQDT) for diatomic systems [6—
8], a new understanding of atomic interaction has emerged,
along with a new, nonperturbative framework for studying
and uncovering universal properties at different length
scales in quantum two-atom, few-atom, and many-atom
systems [8—10]. For a many-atom quantum system, in
particular, it extends our understanding from weak cou-
pling to arbitrary scattering length and from densities
restricted by pB3 < 1 to pB3 ~ 10, or a typical density
of 10%° 1/cm?, for alkali-metal atoms [10].

In this work, we apply this methodology [8—10], which
we call the method of effective potential, or the method of
renormalization in coordinate space, to show that a many-
atom Bose system at zero temperature, even one with
positive scattering length, has a liquid phase in addition
to its well-known gaseous phase. The two phases corre-
spond to different branches of many-atom states, with the
same long-range, but different short-range correlations. A
zero-temperature universal phase diagram is presented that
is applicable to all Bose systems with a —Cq4/r° type of
long-range interaction. The result shows, for example, that
a gaseous Bose-Einstein condensate (BEC) becomes un-
stable and undergoes a first-order phase transition to the
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liquid phase either beyond a critical density or beyond a
critical scattering length. The implications of this result for
both alkali-metal and *He Bose systems will be discussed
as examples.

Consider an N-body Bose system with pairwise interac-
tion v(r) that has the property of v(r) — —C,/r" (n >3)
at large r. We have shown in a recent publication [10] that
such a system, at sufficiently small densities, follows a
universal equation of state (energy per particle as a func-
tion of density), called the universal equation of state at
length scale 8, = (mC,/h*)"/ "2 which, other than scal-
ing, is uniquely determined by the exponent n of the long-
range interaction and a scaled scattering length.
Specifically

ES/N = Q(n)(ps’ aOs)r (1)

where E; = E/sp is a scaled energy with energy scale
sg = (?/m)(1/B,)%, ps = pB; is a scaled density, ay, =
ay/ B, is a scaled s wave scattering length, and Q) is a
universal function that is uniquely determined by the ex-
ponent n of the van der Waals interaction. Here the *“suffi-
ciently small density” requires only that v(r) at the average
interparticle separation, r, = (4mp/3)~'/3, is well repre-
sented by its asymptotic form of —C,,/r". For a many-atom
system with n = 6, this range of densities can be esti-
mated, from, e.g., Bs/Be¢ < ~1/2 for a typical atom
[11,12], to correspond to a range of 0 < p < ~10/ﬂg.
[Here Bg is the length scale that corresponds to the Cg
term in the expansion v(r) = —Cq/r® — Cg/r® + ....] For
higher densities, there may still be universal properties for
some classes of atomic systems at shorter length scales
such as Bg. Beyond that, at densities where the electronic
wave functions for different atoms start to overlap signifi-
cantly with each other, no universal properties are gener-
ally expected, as nature has revealed to us through different
crystal structures (solid phases) for different atoms. The
pairwise interaction approximation also fails for such
systems.

We restrict ourselves here to densities where the univer-
sal equation of state at length scale 3, is expected to be
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applicable. Our theory for Q" is based on a theory of
many-body Bose systems as outlined in Ref. [10] and is
called here the nearest-neighbor theory (NNT) of many-
body Bose systems. In this formulation, the energy per
particle and the pair distribution function g(r) for an
N-particle Bose system with pairwise interaction v(r) —
—C,/r" (n>3) at large r are given by
27wC,p
(n—3)a" %’
and g(r) = |F(r)|?, respectively. Here F(r) = u(r)/r is a
pair correlation function, A is a pair correlation energy, and

d is a healing distance beyond which F = 1. They are
determined by the solutions of

E/N = 21/2 — (2)

n d°
B ARG Ry NCET
m d
with a density-dependent normalization
d
47Tpf uidr =1, 4)
0

and boundary conditions (u,/u))l,—; = 1/d, and u,(r =
d) = r. This formulation for a many-body Bose system has
a clear physical interpretation. The first term in Eq. (2),
A/2, represents the energy of a particle as altered by its
interaction with its nearest neighbor. The second term
represents the mean field due to the van der Waals inter-
action with all other particles. Equation (4) gives the heal-
ing distance d a physical interpretation in NNT as being the
distance within which the nearest neighbor is to be found.
This theory was first deduced [10] from a constrained
variational method [13,14] based on the Jastrow wave
function [15]. A different derivation, which does not rely
on the Jastrow wave function and has a greater potential to
be generalized to a nearest g-neighbor theory (¢ > 1), is
also possible and will be presented elsewhere. We stress
here only that NNT is a general theory of a many-body
Bose system with little assumption other than that only the
nearest neighbors are correlated, an excellent approxima-
tion for all densities of interest here, as has been tested
previously [10,14].

Systematic solutions of Egs. (3) and (4) for the densities
of interest take advantage of the following two results.
(a) For any u, that satisfies Eq. (3), one can show that

L - —[m(d)]z[

which means that the normalization integral can be deter-
mined solely from u, and the energy dependence of its
logarithmic derivative at the boundary. (b) At any radius
where v(r) is well represented by —C,,/r", the solution of
Eq. (3) can be written as [6,8,10]

AP () = KegSo(r))l (6

Here A is a normalization constant. K¢ is a short-range K
matrix that is related, for n > 3, to ag, by [8,9]

N E)

r=d

)

uy (ry) =

= |:b2b r'a - b)} K¢ + tan(wb/2) o

I'(l1 +b) |K¢ — tan(wbh/2)’

where b = 1/(n — 2). f‘(”) and g‘(”) are the AQDT refer-
ence functions for —C,, / r"* potential [6,10,16]. They de-
pend on r only through a scaled radius r, = r/, and on
energy only through a scaled energy A, = A/sp.

From these results, it is easy to show that the equation of
state follows a universal behavior, independent of the
nature of short-range interactions except through ay, pro-
vided that the density is sufficiently small that the v(r) at
r, and beyond (same as d and beyond, since d has the same
order of magnitude as r, from its very definition) is well
represented by —C,/r". The corresponding Q™ namely,
the QO in NNT approximation, is given by

2mp;

= = . “fFs
ES/N Q (py aOS) /\3/2 (n — 3)d§n,3) ’ (8)
with the A, and d; = d/ 3, pair determined from
1 du,\ 1
o @)l 2

d 1 du Ay —-1/2
ool ]
and Eq. (6) for u, (r,).

Figure 1 illustrates a typical equation of state for a
many-atom Bose system (n = 6) with a large positive
scattering length. It shows that the universal equation of
state has in general multiple branches, corresponding to
multiple solutions of Eqgs. (9) and (10) for the same scaled
density, each representing a different short-range correla-
tion function. In particular, a Bose system with a positive
scattering length has a liquid branch in addition to its well-
known gaseous branch. This liquid branch, characterized
by a negative energy per particle (self-binding) and a
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FIG. 1. Two branches of universal equation of state at length
scale B4, computed in NNT, for a many-atom Bose system with
ags = ay/Be = 16.9, describing “He or any other system with
the same scaled scattering length. Solid line: liquid branch.
Dash-dotted line: gaseous branch. The liquid branch terminates
at a critical point C, as shown in the inset.
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negative pressure at small densities, differs from that for a
negative scattering length [10] in one important aspect.
Unlike the liquid branch for a negative scattering length
that exists in the limit of zero density, the liquid branch for
a positive scattering length terminates at a critical point C,
corresponding to a scaled critical density p,, that depends
on the scaled scattering length ag,. The physical conse-
quence of this result is clear. Below p,, the gaseous BEC
phase is the only phase that exists and is stable. (More
precisely, it is metastable with metastability determined by
the rate of molecular formation through three-body recom-
bination [17,18].) Beyond the critical density, with the
emergence of liquid states that have lower energy per
particle, a gaseous BEC becomes unstable and can con-
dense (or sometimes called ““collapse’) into a liquid state.

The universal equation of state as shown in Fig. 1 can be
computed for any scaled scattering length. Putting together
the critical densities for different scaled scattering lengths
gives us the phase diagram as shown in Fig. 2. Since all the
critical densities stay within the range (p, < 10) in which
the universal equation of state at length scale B¢ is ex-
pected to be followed, this phase diagram is also universal
and applicable to all atomic Bose systems with v(r) —
—Cg/7° at large interatomic separations.

The phase diagram of Fig. 2 has a number of physical
implications. It shows, for example, that (a) a gaseous BEC
at a fixed positive scattering length becomes unstable and
undergoes a first-order phase transition beyond a critical
density. (b) A gaseous BEC at a fixed density becomes
unstable beyond a critical scattering length. (c¢) No stable
gaseous BEC phase exists beyond a density of 3.93 ,82, the
maximum critical density corresponding to the zero scat-
tering length. The most dramatic feature of this phase
diagram is the sensitive dependence of the critical density
on the scaled scattering length. It decreases by about
6 orders of magnitude as a, is varied from O to 10. As a
result, this phase diagram has implications on the stability
of a gaseous BEC even at dilute densities that are easily
achieved under existing experimental conditions [19].

Ps
3
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FIG. 2. The universal phase diagram for a many-atom (n = 6)
Bose system at zero temperature. Note the logarithmic scale for
the density. Systems with negative scattering lengths have been
discussed in Ref. [10].

Table I gives the numbers for some specific points on the
phase diagram that can be of immediate experimental
interest. For ao, = 16.9, a critical scaled density of p., =
8.92 X 1077 is predicted. This value of a corresponds to
that of *He. Here we have used Ce = 1.461 a.u., with the
corresponding scaling parameters listed in Table II, and
ag = 172 a.u., which is computed from the HFD-B(HE)
potential of Aziz et al. [11]. From the parameters in
Table II, p,., = 8.68 X 1077 leads to the prediction that
“He should have a metastable gaseous BEC phase below a
density of p. = 8.68 X 1077(1/3;) = 5.58 X 10" 1/cm®.

We emphasize that the results such as p. =
8.68 X 1077 for ay, = 16.9, and the corresponding equa-
tion of state shown in Fig. 1 (including its predictions of
equilibrium density and equilibrium energy per particle for
the liquid phase [10], which will be studied in more detail
elsewhere) are all universal properties at length scale B,
applicable not only to “He, but any system with the same
type of long-range interaction and the same scaled scatter-
ing length. For example, they would apply to 8Rb with its
scattering length tuned, via a Feshbach resonance [23,24],
to ap = 16.98¢ = 2780 a.u. For such a system, the same
Pes = 8.68 X 1077 would translate into a critical density
of p.=8.68%x1077(1/B3) = 1.32 X 102 1/cm?. This
result also implies that a gaseous 3 Rb BEC with a density
of 1.32 X 10'* 1/cm?® would become unstable beyond a
critical scattering length of 2780 a.u. As another example,
for ay, = 10, the theory predicts a critical scaled density of
Pos = 459X 107 From the scaling parameters in
Table II, this translates into a critical density of 6.98 X
10'? 1/cm? for 3 Rb, assuming its scattering length is
tuned to ay, = 1084 = 1643 a.u. For 2*Na, it translates to
a critical density of 4.27 X 10'3 1/cm? for a scattering
length tuned to ag = 1084 = 898.6 a.u. Such densities
and scattering lengths are easily achievable under existing
experimental conditions [19].

These results are consistent with and offer an explana-
tion for the experiment by Claussen et al. [19], in which
excessive loss of atoms from a gaseous condensate (more
than what can be attributed to three-body recombination
[17,18]), has been observed for large scattering lengths. It
is easily verified that all the experimental conditions under
which this excessive loss has been observed in [19] corre-
spond to having scattering lengths greater than the critical
scattering length. The theory also explains the similarity of
behaviors observed in experiments in which the scattering
length is tuned to either a negative value [25] or a large
positive value [19], both leading, in our picture here and in
Ref. [10], to a quantum phase transition from a gaseous to a
liquid phase. In fact, a more systematic experimental study,
similar to the one by Claussen et al. [19], should allow for a
direct experimental measurement of a considerable portion
of the universal phase diagram corresponding to large
scaled scattering lengths.

While the phase diagram that we have presented may be
of more direct experimental interest, also important are the
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TABLE I. Selected data of critical densities and other results. The first two columns give the critical density as a function of the
scattering length. The inverse of these results gives the critical scattering length as a function of density. E.;/N is the energy per
particle at the critical density. A, is the pair correlation energy at the critical density. €,,, is the energy of a molecule in its least-bound
s state, as determined from the scattering length using the quantum-defect theory of Ref. [6]. Note that A, is always smaller than €,,,,.
The numbers are all scaled quantities and applicable to all quantum systems with the same scaled scattering length.

Ao Pecs Ecs/N /\05 €ms
16.9 8.68 X 1077 -2.12x 1073 —4.24 X 1073 —3.80 X 1073
14.0 1.58 X 107° —3.15%x 1073 -6.31 X 1073 —5.64 X 1073
10.0 4.59 X 107° —6.45 X 1073 —1.29 X 1072 —1.15 X 1072
5.00 4.51 X 1073 —2.99 X 1072 —5.98 X 1072 —5.31 X 1072
0.00 3.93 —147 —129 -72.8

conceptual insights the theory is starting to provide us on
the very nature of the liquid states. (a) It resolves the
apparent contradiction that “He has a liquid BEC phase
but a positive scattering length, a characteristic usually
associated with a gaseous BEC. The answer is that they
both exist, depending on the density. (b) It shows explicitly
that the gaseous and liquid states are different branches of
many-atom states with the same long-range, F = 1, but
different short-range correlations. (c) The liquid states can
be correlated to the molecular states. In particular, the
liquid states discussed here and illustrated in Fig. 1, which
we call the first branch of liquid, evolve from the least-
bound (the most highly excited) vibrational state of a
diatomic molecule. A liquid state is first formed when
the average interparticle separation becomes sufficiently
small that the wave function of a would-be molecule in its
least-bound state starts to overlap with other atoms. This is
the physical origin of both the existence of the critical
density and its sensitive dependence on the scattering
length. Beyond the critical density, the liquid states emerge
from the least-bound molecular state by allowing the atoms
in a would-be molecule to move free from each other,
further lowering their energy, as illustrated in Table I,
which shows that the pair correlation energy at the critical
density is always lower than the energy of a molecule in its
least-bound vibrational state. (d) For any system other than
helium, we expect that there would be other branches of
liquid states, evolving from molecular vibrational states
lower than the least-bound state, to emerge at higher
critical densities.

TABLE II. Scaling parameters for *He and selected alkali-
metal atoms. B¢, 1/B3, and sy = (h*/m)(1/B¢)* are the length,
density, and energy scales, respectively. They are determined by
the Cg coefficient and the atomic mass.

Atom  C4 (au.) B¢ (auw) 1/B3 (1/cm?) sg (K)
“He 1.461% 10.16 6.433 X 102! 0.4192
BNa  1556° 89.86 9.300 X 10'®  9.331 x 10™*
85Rb 4707°¢ 164.6 1.522 X 10" 7.558 X 1075

“From Ref. [11].
®From Ref. [20].
‘From Refs. [21,22].

In conclusion, we have presented a theoretical frame-
work that gives a unified understanding of both the gaseous
and the liquid states of a many-atom Bose system at zero
temperature. A universal phase diagram, amenable to ex-
perimental verification, has been presented that is appli-
cable to any Bose system with a —C¢/ 7 type of interaction
at large interparticle separations. The theory provides us
with considerable insights into the nature of liquid states
that we are only beginning to understand.
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